7 min read
Azure ML Designer - Visual Machine Learning Pipeline Development
Azure Machine Learning Designer provides a drag-and-drop interface for building machine learning pipelines. It bridges the gap between no-code accessibility and enterprise-grade ML capabilities. Today, I want to show you how to leverage Designer for rapid prototyping and production workflows.
Understanding Azure ML Designer
Designer offers:
- Visual pipeline building - Drag-and-drop components
- Pre-built modules - Data processing, training, evaluation
- Custom components - Extend with your own code
- Real-time endpoints - One-click deployment
- Batch endpoints - Scheduled scoring pipelines
Getting Started
Access Designer
- Navigate to Azure ML Studio
- Click “Designer” in the left menu
- Create a new pipeline or use a sample
Key Concepts
Pipeline = Collection of connected modules
Module = Self-contained processing step
Dataset = Input data for the pipeline
Compute = Resources for running the pipeline
Building a Classification Pipeline
Step 1: Add Dataset
- Drag Dataset module from the left panel
- Configure:
- Select registered dataset, OR
- Use sample dataset (e.g., Adult Census Income)
Step 2: Data Preprocessing
Recommended modules:
- Select Columns in Dataset:
Purpose: Choose relevant features
Configuration: Select by name or by type
- Clean Missing Data:
Purpose: Handle null values
Options:
- Remove rows
- Replace with mean/median/mode
- Replace with custom value
- Edit Metadata:
Purpose: Set column types and categories
Configuration: Mark categorical columns
- Normalize Data:
Purpose: Scale numeric features
Methods:
- MinMax
- ZScore
- Logistic
Step 3: Split Data
Module: Split Data
Configuration:
Splitting mode: Split Rows
Fraction of rows: 0.7
Random seed: 42
Stratified split: Yes (for classification)
Step 4: Train Model
Modules to connect:
1. Algorithm module:
- Two-Class Boosted Decision Tree
- Two-Class Logistic Regression
- Two-Class Neural Network
2. Train Model:
Connect:
- Algorithm to left input
- Training data to right input
Configuration:
- Label column: target
Step 5: Score and Evaluate
Score Model:
Connect:
- Trained model to left input
- Test data to right input
Evaluate Model:
Connect:
- Scored data to input
Outputs:
- Accuracy metrics
- ROC curve
- Confusion matrix
Complete Pipeline Example
[Dataset: Customer Data]
│
▼
[Select Columns in Dataset]
│
▼
[Clean Missing Data]
│
▼
[Edit Metadata] ───── Mark categorical columns
│
▼
[Normalize Data]
│
▼
[Split Data] ─────── 70/30 split
│ │
│ └─────────────────┐
▼ ▼
[Train Model] ◄── [Two-Class Boosted Decision Tree]
│
▼
[Score Model] ◄───── Test Data
│
▼
[Evaluate Model]
Custom Python Scripts
Execute Python Script Module
# dataframe1: Input dataset 1
# dataframe2: Input dataset 2 (optional)
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
def azureml_main(dataframe1=None, dataframe2=None):
"""
Custom preprocessing function
"""
df = dataframe1.copy()
# Feature engineering
df['age_group'] = pd.cut(df['age'],
bins=[0, 25, 45, 65, 100],
labels=['young', 'middle', 'senior', 'elderly'])
# Encode categorical variables
le = LabelEncoder()
for col in df.select_dtypes(include=['object']).columns:
df[col] = le.fit_transform(df[col].astype(str))
# Create interaction features
df['income_per_hour'] = df['income'] / (df['hours_per_week'] + 1)
# Drop original columns if needed
df = df.drop(['redundant_column'], axis=1, errors='ignore')
return df, # Return tuple of DataFrames
Execute R Script Module
# dataframe1: Input dataset 1
# dataframe2: Input dataset 2 (optional)
azureml_main <- function(dataframe1, dataframe2) {
# Load libraries
library(dplyr)
library(tidyr)
# Custom preprocessing
df <- dataframe1 %>%
mutate(
age_squared = age^2,
log_income = log(income + 1)
) %>%
filter(!is.na(target))
# Return result
return(list(df))
}
Hyperparameter Tuning
Using Tune Model Hyperparameters
Module: Tune Model Hyperparameters
Configuration:
Parameter sweeping mode: Entire grid
# or Random sweep
Algorithm: Two-Class Decision Forest
Parameter ranges:
- Number of trees: [50, 100, 200]
- Maximum depth: [5, 10, 15, 20]
- Minimum samples per leaf: [1, 5, 10]
Metric: Accuracy
# Other options: AUC, Precision, Recall, F1
Connect:
- Training data
- Validation data (optional)
Creating Real-Time Endpoint
Step 1: Create Inference Pipeline
- After training pipeline completes
- Click “Create inference pipeline” > “Real-time inference pipeline”
- Designer auto-generates the inference pipeline
Step 2: Modify Inference Pipeline
Auto-generated pipeline modifications:
- Removes training modules
- Adds Web Service Input
- Adds Web Service Output
- Keeps preprocessing and scoring modules
Manual adjustments:
- Remove unnecessary columns from output
- Add data validation
- Format output for consumers
Step 3: Deploy
- Submit the inference pipeline
- After completion, click “Deploy”
- Configure endpoint:
Endpoint configuration:
Name: customer-churn-endpoint
Description: Real-time churn prediction
Compute type: Azure Kubernetes Service
Compute target: Select existing AKS cluster
Authentication:
Type: Key-based
# or Token-based
Advanced settings:
Enable Application Insights: Yes
CPU cores: 0.1
Memory GB: 0.5
Step 4: Test Endpoint
import requests
import json
# Endpoint URL and key from Azure ML Studio
scoring_uri = "https://endpoint-url.azureml.net/score"
api_key = "your-api-key"
# Test data
data = {
"Inputs": {
"data": [
{
"age": 35,
"workclass": "Private",
"education": "Bachelors",
"occupation": "Tech-support",
"hours_per_week": 40
}
]
}
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
response = requests.post(scoring_uri, json=data, headers=headers)
print(response.json())
Batch Inference Pipeline
Create Batch Pipeline
Pipeline structure:
[Dataset (or Data Input)] ─── Batch data source
│
▼
[Select Columns]
│
▼
[Apply Transformation] ◄── Trained preprocessing
│
▼
[Score Model] ◄── Trained model
│
▼
[Export Data] ─── Output to blob storage
Schedule Batch Pipeline
from azureml.core import Workspace, Pipeline
from azureml.pipeline.core import Schedule, ScheduleRecurrence
ws = Workspace.from_config()
# Get published pipeline
pipeline_id = "your-pipeline-id"
# Create recurrence
recurrence = ScheduleRecurrence(
frequency="Day",
interval=1,
start_time="00:00"
)
# Create schedule
schedule = Schedule.create(
workspace=ws,
name="daily-batch-scoring",
pipeline_id=pipeline_id,
experiment_name="batch-scoring",
recurrence=recurrence
)
Custom Components
Create Reusable Component
# component.yaml
name: Custom Feature Engineering
display_name: Custom Feature Engineering
version: 1
type: command
inputs:
input_data:
type: uri_folder
config:
type: string
default: "default"
outputs:
output_data:
type: uri_folder
code: ./src
command: >-
python feature_engineering.py
--input-data ${{inputs.input_data}}
--config ${{inputs.config}}
--output-data ${{outputs.output_data}}
environment:
conda_file: ./conda.yaml
image: mcr.microsoft.com/azureml/base:latest
Register Component
from azure.ai.ml import MLClient, load_component
from azure.identity import DefaultAzureCredential
ml_client = MLClient(
DefaultAzureCredential(),
subscription_id,
resource_group,
workspace_name
)
# Load and register component
component = load_component(source="./component.yaml")
registered_component = ml_client.components.create_or_update(component)
print(f"Component: {registered_component.name}")
print(f"Version: {registered_component.version}")
Best Practices
- Start with sample pipelines - Learn patterns from examples
- Modularize your pipelines - Create reusable components
- Version your pipelines - Track changes over time
- Test with subset data - Iterate faster during development
- Document modules - Add descriptions and comments
- Monitor endpoints - Enable Application Insights
- Use consistent naming - Clear module and pipeline names
- Validate data early - Catch issues before training
When to Use Designer vs Code
Use Designer when:
- Rapid prototyping
- Non-programmer team members
- Simple to medium complexity pipelines
- Standard preprocessing steps
- Quick deployment needed
Use Code (SDK) when:
- Complex custom logic
- Version control requirements
- CI/CD integration
- Advanced debugging needs
- Team with coding expertise
Conclusion
Azure ML Designer provides a powerful visual interface for building machine learning pipelines. While it’s often positioned as a no-code tool, it supports sophisticated workflows through custom Python/R scripts and reusable components. By combining visual development with code modules where needed, you can build production-ready ML solutions rapidly.