5 min read
Azure Synapse Analytics: Build 2022 Updates
Azure Synapse Analytics received significant updates at Build 2022, enhancing its position as a unified analytics platform. From improved Spark integration to enhanced data exploration, here are the key updates.
Synapse Link Enhancements
Connect operational data to analytics:
-- Create Synapse Link for Cosmos DB
CREATE EXTERNAL DATA SOURCE CosmosDB_Analytics
WITH (
LOCATION = 'https://mycosmosaccount.documents.azure.com:443/',
CREDENTIAL = CosmosCredential
);
-- Query Cosmos DB data directly
SELECT
c.customerId,
c.name,
c.email,
COUNT(o.orderId) as orderCount,
SUM(o.totalAmount) as totalSpent
FROM OPENROWSET(
PROVIDER = 'CosmosDB',
CONNECTION = 'Account=mycosmosaccount;Database=ecommerce',
OBJECT = 'customers',
SERVER_CREDENTIAL = 'CosmosCredential'
) AS c
JOIN OPENROWSET(
PROVIDER = 'CosmosDB',
CONNECTION = 'Account=mycosmosaccount;Database=ecommerce',
OBJECT = 'orders',
SERVER_CREDENTIAL = 'CosmosCredential'
) AS o ON c.customerId = o.customerId
GROUP BY c.customerId, c.name, c.email
ORDER BY totalSpent DESC;
Serverless SQL Pool Improvements
Enhanced query capabilities:
-- Query Parquet files with automatic schema inference
SELECT
year,
month,
productCategory,
SUM(revenue) as totalRevenue,
COUNT(DISTINCT customerId) as uniqueCustomers,
AVG(orderValue) as avgOrderValue
FROM OPENROWSET(
BULK 'https://datalake.blob.core.windows.net/sales/**/*.parquet',
FORMAT = 'PARQUET'
) AS sales
WHERE year = 2022
GROUP BY ROLLUP(year, month, productCategory)
ORDER BY year, month, productCategory;
-- Create external table with partitioning
CREATE EXTERNAL TABLE dbo.SalesPartitioned
WITH (
LOCATION = 'sales/partitioned/',
DATA_SOURCE = DataLakeStorage,
FILE_FORMAT = ParquetFormat,
PARTITION_KEY = 'year,month'
)
AS
SELECT
*,
YEAR(orderDate) as year,
MONTH(orderDate) as month
FROM staging.Sales;
-- Query with partition elimination
SELECT *
FROM dbo.SalesPartitioned
WHERE year = 2022 AND month = 5; -- Automatically filters partitions
Spark Pool Integration
Use Spark for complex analytics:
# PySpark notebook for customer analytics
from pyspark.sql import SparkSession
from pyspark.sql.functions import *
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.clustering import KMeans
# Read data from Delta Lake
customers_df = spark.read.format("delta").load(
"abfss://analytics@datalake.dfs.core.windows.net/customers"
)
orders_df = spark.read.format("delta").load(
"abfss://analytics@datalake.dfs.core.windows.net/orders"
)
# Customer RFM analysis
rfm_df = orders_df.groupBy("customerId").agg(
datediff(current_date(), max("orderDate")).alias("recency"),
count("orderId").alias("frequency"),
sum("totalAmount").alias("monetary")
)
# Feature engineering
assembler = VectorAssembler(
inputCols=["recency", "frequency", "monetary"],
outputCol="features"
)
rfm_features = assembler.transform(rfm_df)
# K-means clustering for customer segmentation
kmeans = KMeans(k=4, seed=42)
model = kmeans.fit(rfm_features)
predictions = model.transform(rfm_features)
# Save results to Delta Lake
predictions.select(
"customerId", "recency", "frequency", "monetary", "prediction"
).write.format("delta").mode("overwrite").save(
"abfss://analytics@datalake.dfs.core.windows.net/customer_segments"
)
# Display cluster centers
print("Cluster Centers:")
for i, center in enumerate(model.clusterCenters()):
print(f"Cluster {i}: Recency={center[0]:.2f}, Frequency={center[1]:.2f}, Monetary={center[2]:.2f}")
Data Explorer Integration
Time-series and log analytics:
// Kusto Query Language in Synapse Data Explorer
// Analyze IoT sensor data
SensorReadings
| where Timestamp > ago(24h)
| summarize
AvgTemperature = avg(Temperature),
MaxTemperature = max(Temperature),
MinTemperature = min(Temperature),
ReadingCount = count()
by SensorId, bin(Timestamp, 1h)
| order by Timestamp desc
// Detect anomalies in sensor data
SensorReadings
| where Timestamp > ago(7d)
| make-series AvgTemp=avg(Temperature) on Timestamp step 1h by SensorId
| extend anomalies = series_decompose_anomalies(AvgTemp)
| mv-expand Timestamp, AvgTemp, anomalies
| where anomalies != 0
| project Timestamp, SensorId, AvgTemp, AnomalyScore = anomalies
// Log analytics for application monitoring
AppLogs
| where Timestamp > ago(1h)
| where Level == "Error"
| summarize ErrorCount = count() by ServiceName, ErrorMessage
| top 10 by ErrorCount
| render barchart
Pipeline Orchestration
Build data pipelines:
{
"name": "DailyETLPipeline",
"properties": {
"activities": [
{
"name": "ExtractFromSource",
"type": "Copy",
"inputs": [
{
"referenceName": "SourceSQL",
"type": "DatasetReference"
}
],
"outputs": [
{
"referenceName": "StagingParquet",
"type": "DatasetReference"
}
],
"typeProperties": {
"source": {
"type": "AzureSqlSource",
"sqlReaderQuery": "SELECT * FROM Orders WHERE ModifiedDate > @{pipeline().parameters.LastRunDate}"
},
"sink": {
"type": "ParquetSink"
}
}
},
{
"name": "TransformWithSpark",
"type": "SynapseNotebook",
"dependsOn": [
{
"activity": "ExtractFromSource",
"dependencyConditions": ["Succeeded"]
}
],
"typeProperties": {
"notebook": {
"referenceName": "TransformOrders",
"type": "NotebookReference"
},
"parameters": {
"inputPath": {
"value": "@pipeline().parameters.StagingPath",
"type": "string"
},
"outputPath": {
"value": "@pipeline().parameters.OutputPath",
"type": "string"
}
}
}
},
{
"name": "LoadToDWH",
"type": "SqlPoolStoredProcedure",
"dependsOn": [
{
"activity": "TransformWithSpark",
"dependencyConditions": ["Succeeded"]
}
],
"typeProperties": {
"storedProcedureName": "dbo.usp_LoadOrders",
"storedProcedureParameters": {
"SourcePath": {
"value": "@pipeline().parameters.OutputPath",
"type": "String"
}
}
}
}
],
"parameters": {
"LastRunDate": {
"type": "string",
"defaultValue": "2022-01-01"
},
"StagingPath": {
"type": "string"
},
"OutputPath": {
"type": "string"
}
}
}
}
Dedicated SQL Pool Optimization
-- Create optimized table with distribution
CREATE TABLE dbo.FactSales
WITH (
DISTRIBUTION = HASH(CustomerKey),
CLUSTERED COLUMNSTORE INDEX,
PARTITION (OrderDateKey RANGE RIGHT FOR VALUES
(20220101, 20220201, 20220301, 20220401, 20220501, 20220601))
)
AS
SELECT
s.SalesOrderId,
c.CustomerKey,
p.ProductKey,
d.DateKey as OrderDateKey,
s.Quantity,
s.UnitPrice,
s.TotalAmount,
s.DiscountAmount
FROM staging.Sales s
JOIN dbo.DimCustomer c ON s.CustomerId = c.CustomerId
JOIN dbo.DimProduct p ON s.ProductId = p.ProductId
JOIN dbo.DimDate d ON CAST(s.OrderDate as DATE) = d.Date;
-- Create statistics for query optimization
CREATE STATISTICS stat_FactSales_CustomerKey ON dbo.FactSales (CustomerKey);
CREATE STATISTICS stat_FactSales_OrderDateKey ON dbo.FactSales (OrderDateKey);
-- Materialized view for common aggregations
CREATE MATERIALIZED VIEW dbo.vw_DailySalesSummary
WITH (DISTRIBUTION = HASH(OrderDateKey))
AS
SELECT
OrderDateKey,
CustomerKey,
COUNT_BIG(*) as OrderCount,
SUM(TotalAmount) as TotalRevenue,
SUM(Quantity) as TotalQuantity
FROM dbo.FactSales
GROUP BY OrderDateKey, CustomerKey;
Summary
Azure Synapse Analytics at Build 2022 delivers:
- Enhanced Synapse Link for real-time analytics
- Improved serverless SQL capabilities
- Better Spark and Data Explorer integration
- Streamlined pipeline orchestration
- Optimized dedicated SQL pools
Build unified analytics solutions across all your data.
References: