5 min read
Azure Private Multi-Access Edge Compute (MEC)
Azure Private Multi-Access Edge Compute (MEC) brings Azure services to the network edge, enabling ultra-low latency applications for enterprises. Combined with private 5G, it creates powerful edge computing solutions.
Understanding Private MEC
Architecture Overview
# Private MEC deployment architecture
components:
azure_stack_edge:
- Compute platform for edge workloads
- Kubernetes for container orchestration
- GPU support for AI/ML inference
private_5g_core:
- Local packet core processing
- SIM management and authentication
- Quality of Service enforcement
azure_services:
- IoT Hub for device management
- Azure Monitor for observability
- Azure Arc for management plane
Deploying Private MEC
using Azure.ResourceManager;
using Azure.ResourceManager.Resources;
public class PrivateMECDeploymentService
{
private readonly ArmClient _armClient;
public async Task DeployPrivateMECAsync(MECDeploymentConfig config)
{
// Step 1: Deploy Azure Stack Edge
var stackEdge = await DeployStackEdgeAsync(config);
// Step 2: Configure Kubernetes on Stack Edge
await ConfigureKubernetesAsync(stackEdge, config);
// Step 3: Deploy Private 5G Core
await DeployPrivate5GCoreAsync(config);
// Step 4: Deploy edge workloads
await DeployEdgeWorkloadsAsync(config);
// Step 5: Configure monitoring
await ConfigureMonitoringAsync(config);
}
private async Task<AzureStackEdgeDevice> DeployStackEdgeAsync(MECDeploymentConfig config)
{
var deviceData = new DataBoxEdgeDeviceData(config.Location)
{
Sku = new SkuInfo("EdgeP_High"),
Tags =
{
["Environment"] = config.Environment,
["Site"] = config.SiteName
}
};
var subscription = await _armClient.GetDefaultSubscriptionAsync();
var rg = await subscription.GetResourceGroupAsync(config.ResourceGroup);
var result = await rg.Value.GetDataBoxEdgeDevices()
.CreateOrUpdateAsync(WaitUntil.Completed, config.DeviceName, deviceData);
return result.Value;
}
private async Task DeployEdgeWorkloadsAsync(MECDeploymentConfig config)
{
// Deploy containerized workloads
var workloads = new List<EdgeWorkload>
{
new EdgeWorkload
{
Name = "video-analytics",
Image = "mcr.microsoft.com/azure-video-analyzer:latest",
Resources = new ResourceRequirements
{
Cpu = "2",
Memory = "4Gi",
Gpu = "1"
}
},
new EdgeWorkload
{
Name = "data-processor",
Image = config.DataProcessorImage,
Resources = new ResourceRequirements
{
Cpu = "1",
Memory = "2Gi"
}
}
};
foreach (var workload in workloads)
{
await DeployWorkloadAsync(config, workload);
}
}
}
public class MECDeploymentConfig
{
public string ResourceGroup { get; set; }
public string Location { get; set; }
public string DeviceName { get; set; }
public string SiteName { get; set; }
public string Environment { get; set; }
public string DataProcessorImage { get; set; }
}
Edge Application Example
# Real-time video analytics at the edge
import cv2
import numpy as np
from azure.iot.device import IoTHubModuleClient
import onnxruntime as ort
import json
import asyncio
class EdgeVideoAnalytics:
def __init__(self):
self.client = IoTHubModuleClient.create_from_edge_environment()
self.model = ort.InferenceSession("/models/object-detection.onnx")
self.confidence_threshold = 0.7
async def process_video_stream(self, stream_url):
cap = cv2.VideoCapture(stream_url)
while True:
ret, frame = cap.read()
if not ret:
break
# Preprocess frame
input_tensor = self.preprocess(frame)
# Run inference
detections = self.detect_objects(input_tensor)
# Process detections
for detection in detections:
if detection['confidence'] > self.confidence_threshold:
await self.handle_detection(detection, frame)
# Limit processing rate
await asyncio.sleep(0.033) # ~30 FPS
cap.release()
def preprocess(self, frame):
# Resize and normalize
resized = cv2.resize(frame, (640, 480))
normalized = resized.astype(np.float32) / 255.0
return np.expand_dims(normalized.transpose(2, 0, 1), 0)
def detect_objects(self, input_tensor):
input_name = self.model.get_inputs()[0].name
outputs = self.model.run(None, {input_name: input_tensor})
detections = []
for i, output in enumerate(outputs[0]):
if output[4] > self.confidence_threshold:
detections.append({
'class_id': int(output[5]),
'confidence': float(output[4]),
'bbox': output[:4].tolist()
})
return detections
async def handle_detection(self, detection, frame):
# Send high-priority events to cloud
if detection['class_id'] in [0, 1, 2]: # Person, vehicle, etc.
event = {
'type': 'detection',
'class_id': detection['class_id'],
'confidence': detection['confidence'],
'timestamp': datetime.utcnow().isoformat()
}
await self.client.send_message_to_output(
json.dumps(event),
"detectionOutput"
)
async def main():
analytics = EdgeVideoAnalytics()
await analytics.client.connect()
# Process multiple video streams
streams = [
"rtsp://camera1.local/stream",
"rtsp://camera2.local/stream"
]
tasks = [analytics.process_video_stream(url) for url in streams]
await asyncio.gather(*tasks)
if __name__ == "__main__":
asyncio.run(main())
Low-Latency API Gateway
// Edge API gateway for local processing
public class EdgeApiGateway
{
private readonly IEdgeCache _cache;
private readonly IEdgeProcessor _processor;
private readonly ICloudForwarder _forwarder;
public async Task<ApiResponse> HandleRequestAsync(ApiRequest request)
{
// Check local cache first
var cachedResponse = await _cache.GetAsync(request.CacheKey);
if (cachedResponse != null)
{
return cachedResponse;
}
// Process locally if possible
if (CanProcessLocally(request))
{
var response = await _processor.ProcessAsync(request);
await _cache.SetAsync(request.CacheKey, response, TimeSpan.FromMinutes(5));
return response;
}
// Forward to cloud
var cloudResponse = await _forwarder.ForwardAsync(request);
return cloudResponse;
}
private bool CanProcessLocally(ApiRequest request)
{
// Determine if request can be handled at edge
return request.Type switch
{
RequestType.RealTimeData => true,
RequestType.LocalCompute => true,
RequestType.CachedQuery => true,
RequestType.CloudOnly => false,
_ => false
};
}
}
Monitoring and Observability
// MEC monitoring queries
// Edge device health
EdgeDeviceMetrics
| where TimeGenerated > ago(1h)
| summarize
AvgCPU = avg(CPUUtilization),
AvgMemory = avg(MemoryUtilization),
AvgGPU = avg(GPUUtilization)
by DeviceId, bin(TimeGenerated, 5m)
| render timechart
// Application latency at edge
EdgeApplicationMetrics
| where TimeGenerated > ago(1h)
| where MetricName == "ProcessingLatency"
| summarize
P50 = percentile(MetricValue, 50),
P95 = percentile(MetricValue, 95),
P99 = percentile(MetricValue, 99)
by ApplicationName, bin(TimeGenerated, 5m)
| render timechart
// Data flow between edge and cloud
EdgeDataFlow
| where TimeGenerated > ago(24h)
| summarize
DataSentToCloud = sum(BytesSent),
DataProcessedLocally = sum(BytesProcessed)
by bin(TimeGenerated, 1h)
| extend LocalProcessingRatio = DataProcessedLocally * 100.0 / (DataSentToCloud + DataProcessedLocally)
| render timechart
Use Cases
- Manufacturing - Real-time quality inspection
- Retail - In-store analytics and inventory
- Healthcare - Medical imaging at point of care
- Sports venues - Fan engagement applications
- Smart cities - Traffic and safety monitoring
Azure Private MEC delivers cloud capabilities at the edge with enterprise-grade security and management.