5 min read
Data Platform Evolution in 2022: Trends and Technologies
The data platform landscape shifted significantly in 2022. Let’s examine the key trends, technologies, and architectural patterns that defined the year.
The Lakehouse Wins
The convergence of data lakes and data warehouses became mainstream:
# Delta Lake enables lakehouse architecture
from delta import DeltaTable
from pyspark.sql import SparkSession
spark = SparkSession.builder \
.config("spark.sql.extensions", "io.delta.sql.DeltaSparkSessionExtension") \
.getOrCreate()
# ACID transactions on data lake
df = spark.read.parquet("abfss://raw@lake.dfs.core.windows.net/sales/")
# Write as Delta table
df.write.format("delta") \
.mode("overwrite") \
.save("abfss://curated@lake.dfs.core.windows.net/sales/")
# Time travel queries
DeltaTable.forPath(spark, "abfss://curated@lake.dfs.core.windows.net/sales/") \
.history() \
.show()
# Schema enforcement
df.write.format("delta") \
.option("mergeSchema", "true") \
.mode("append") \
.save("abfss://curated@lake.dfs.core.windows.net/sales/")
Real-Time Analytics Growth
Streaming data processing became more accessible:
# Azure Event Hubs + Spark Streaming
from pyspark.sql.functions import from_json, col
from pyspark.sql.types import StructType, StringType, DoubleType, TimestampType
# Define schema for IoT events
schema = StructType() \
.add("device_id", StringType()) \
.add("temperature", DoubleType()) \
.add("humidity", DoubleType()) \
.add("timestamp", TimestampType())
# Read from Event Hubs
df = spark.readStream \
.format("eventhubs") \
.option("eventhubs.connectionString", connection_string) \
.load()
# Parse and process
events = df.select(
from_json(col("body").cast("string"), schema).alias("event")
).select("event.*")
# Real-time aggregations
aggregated = events \
.withWatermark("timestamp", "10 minutes") \
.groupBy(
window("timestamp", "5 minutes"),
"device_id"
).agg(
avg("temperature").alias("avg_temp"),
max("temperature").alias("max_temp")
)
# Write to Delta Lake
aggregated.writeStream \
.format("delta") \
.outputMode("append") \
.option("checkpointLocation", "/checkpoints/iot") \
.start("abfss://curated@lake.dfs.core.windows.net/iot_aggregates/")
Data Mesh Architecture
Organizations adopted data mesh principles:
# Data product definition
data_product:
name: Customer 360
domain: Customer Experience
owner: customer-success-team@company.com
description: |
Unified view of customer interactions across all touchpoints.
Updated every 15 minutes from source systems.
schema:
- name: customer_id
type: string
description: Unique customer identifier
- name: lifetime_value
type: decimal(18,2)
description: Total revenue from customer
- name: churn_score
type: float
description: ML-predicted churn probability
quality:
freshness: 15 minutes
completeness: 99.5%
accuracy: Customer ID must exist in CRM
access:
- team: marketing
level: read
- team: sales
level: read
- team: analytics
level: read_write
lineage:
sources:
- crm.customers
- ecommerce.orders
- support.tickets
transformations:
- deduplicate_customers
- calculate_ltv
- predict_churn
DataOps Maturation
CI/CD for data pipelines became standard:
# azure-pipelines.yml for data platform
trigger:
branches:
include:
- main
paths:
include:
- pipelines/**
- transformations/**
stages:
- stage: Validate
jobs:
- job: SchemaValidation
steps:
- script: |
python -m great_expectations checkpoint run data_quality
displayName: 'Run data quality checks'
- job: SQLValidation
steps:
- script: |
sqlfluff lint transformations/**/*.sql
displayName: 'Lint SQL files'
- stage: Test
dependsOn: Validate
jobs:
- job: UnitTests
steps:
- script: |
pytest tests/unit -v --cov=transformations
displayName: 'Run unit tests'
- job: IntegrationTests
steps:
- script: |
pytest tests/integration -v --env=dev
displayName: 'Run integration tests'
- stage: DeployDev
dependsOn: Test
jobs:
- deployment: DeployPipelines
environment: 'data-platform-dev'
strategy:
runOnce:
deploy:
steps:
- task: AzureCLI@2
inputs:
azureSubscription: 'data-platform-dev'
scriptType: 'bash'
scriptLocation: 'inlineScript'
inlineScript: |
az synapse pipeline create \
--workspace-name synapse-dev \
--name ETL-Pipeline \
--file @pipelines/etl.json
Data Quality as Code
Programmatic data quality became essential:
import great_expectations as gx
# Create expectation suite
context = gx.get_context()
suite = context.create_expectation_suite("customer_data_quality")
# Define expectations
expectations = [
# Completeness
{
"expectation_type": "expect_column_values_to_not_be_null",
"kwargs": {"column": "customer_id"}
},
# Uniqueness
{
"expectation_type": "expect_column_values_to_be_unique",
"kwargs": {"column": "customer_id"}
},
# Format
{
"expectation_type": "expect_column_values_to_match_regex",
"kwargs": {
"column": "email",
"regex": r"^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$"
}
},
# Range
{
"expectation_type": "expect_column_values_to_be_between",
"kwargs": {
"column": "age",
"min_value": 0,
"max_value": 150
}
},
# Referential integrity
{
"expectation_type": "expect_column_values_to_be_in_set",
"kwargs": {
"column": "country_code",
"value_set": ["US", "CA", "UK", "AU", "DE", "FR"]
}
},
# Freshness
{
"expectation_type": "expect_column_max_to_be_between",
"kwargs": {
"column": "updated_at",
"min_value": {"$PARAMETER": "yesterday"},
"max_value": {"$PARAMETER": "now"}
}
}
]
for exp in expectations:
suite.add_expectation(gx.expectations.ExpectationConfiguration(**exp))
context.save_expectation_suite(suite)
Semantic Layer Adoption
Business-friendly data access grew:
# dbt semantic layer definition
semantic_models:
- name: orders
defaults:
agg_time_dimension: order_date
description: Order transactions
entities:
- name: order
type: primary
expr: order_id
- name: customer
type: foreign
expr: customer_id
dimensions:
- name: order_date
type: time
type_params:
time_granularity: day
expr: created_at
- name: order_status
type: categorical
expr: status
- name: region
type: categorical
expr: shipping_region
measures:
- name: order_total
description: Total order value
agg: sum
expr: total_amount
- name: order_count
description: Number of orders
agg: count
expr: order_id
- name: average_order_value
description: Average order value
agg: average
expr: total_amount
metrics:
- name: revenue
description: Total revenue
type: simple
type_params:
measure: order_total
- name: orders_per_customer
description: Average orders per customer
type: derived
type_params:
expr: order_count / count(distinct customer)
Key Lessons from 2022
data_platform_lessons = {
"governance_early": "Implement data governance from day one, not as an afterthought",
"quality_automated": "Data quality checks should run automatically in pipelines",
"self_service": "Enable self-service while maintaining governance guardrails",
"real_time_matters": "Batch-only is no longer sufficient for most use cases",
"cloud_native": "Cloud-native services reduce operational burden significantly",
"ai_integration": "AI/ML is a first-class citizen in the data platform"
}
Conclusion
2022 marked the maturation of modern data platforms. The lakehouse architecture proved its value, real-time capabilities became accessible, and DataOps practices solidified. The trends point toward continued consolidation and simplification of the data platform landscape in the years ahead.