5 min read
Cloud Native Maturity: Where Organizations Stand in 2022
Cloud native adoption has progressed significantly in 2022. Let’s assess where organizations stand and what mature cloud native practices look like.
Cloud Native Maturity Model
Level 1: Cloud Hosted
- Lift and shift migrations
- VMs in the cloud
- Traditional architectures
Level 2: Cloud Optimized
- Using managed services
- Basic automation
- Some containerization
Level 3: Cloud Native
- Microservices architecture
- Kubernetes orchestration
- CI/CD pipelines
- Infrastructure as code
Level 4: Cloud Native Advanced
- Service mesh
- GitOps
- Observability stack
- Platform engineering
Level 5: Cloud Native Mastery
- Developer self-service
- Full automation
- Chaos engineering
- FinOps optimization
Assessment Framework
from enum import IntEnum
from dataclasses import dataclass
from typing import Dict, List
class MaturityLevel(IntEnum):
CLOUD_HOSTED = 1
CLOUD_OPTIMIZED = 2
CLOUD_NATIVE = 3
CLOUD_NATIVE_ADVANCED = 4
CLOUD_NATIVE_MASTERY = 5
@dataclass
class MaturityDimension:
name: str
current_level: MaturityLevel
practices: Dict[MaturityLevel, str]
def assess_cloud_native_maturity() -> Dict[str, MaturityDimension]:
dimensions = {
"infrastructure": MaturityDimension(
name="Infrastructure",
current_level=MaturityLevel.CLOUD_HOSTED,
practices={
MaturityLevel.CLOUD_HOSTED: "Manual provisioning, VMs",
MaturityLevel.CLOUD_OPTIMIZED: "Some IaC, managed services",
MaturityLevel.CLOUD_NATIVE: "Full IaC, containers, Kubernetes",
MaturityLevel.CLOUD_NATIVE_ADVANCED: "GitOps, policy as code",
MaturityLevel.CLOUD_NATIVE_MASTERY: "Self-healing, auto-scaling"
}
),
"application_architecture": MaturityDimension(
name="Application Architecture",
current_level=MaturityLevel.CLOUD_HOSTED,
practices={
MaturityLevel.CLOUD_HOSTED: "Monoliths",
MaturityLevel.CLOUD_OPTIMIZED: "Modular monoliths",
MaturityLevel.CLOUD_NATIVE: "Microservices",
MaturityLevel.CLOUD_NATIVE_ADVANCED: "Event-driven, serverless",
MaturityLevel.CLOUD_NATIVE_MASTERY: "Adaptive architectures"
}
),
"deployment": MaturityDimension(
name="Deployment",
current_level=MaturityLevel.CLOUD_HOSTED,
practices={
MaturityLevel.CLOUD_HOSTED: "Manual deployments",
MaturityLevel.CLOUD_OPTIMIZED: "Basic CI/CD",
MaturityLevel.CLOUD_NATIVE: "Automated pipelines",
MaturityLevel.CLOUD_NATIVE_ADVANCED: "Progressive delivery",
MaturityLevel.CLOUD_NATIVE_MASTERY: "Continuous deployment"
}
),
"observability": MaturityDimension(
name="Observability",
current_level=MaturityLevel.CLOUD_HOSTED,
practices={
MaturityLevel.CLOUD_HOSTED: "Basic monitoring",
MaturityLevel.CLOUD_OPTIMIZED: "Centralized logging",
MaturityLevel.CLOUD_NATIVE: "Metrics, traces, logs",
MaturityLevel.CLOUD_NATIVE_ADVANCED: "Distributed tracing, SLOs",
MaturityLevel.CLOUD_NATIVE_MASTERY: "AIOps, predictive"
}
),
"security": MaturityDimension(
name="Security",
current_level=MaturityLevel.CLOUD_HOSTED,
practices={
MaturityLevel.CLOUD_HOSTED: "Perimeter security",
MaturityLevel.CLOUD_OPTIMIZED: "Basic cloud security",
MaturityLevel.CLOUD_NATIVE: "DevSecOps, scanning",
MaturityLevel.CLOUD_NATIVE_ADVANCED: "Zero trust, policy enforcement",
MaturityLevel.CLOUD_NATIVE_MASTERY: "Security as code, auto-remediation"
}
)
}
return dimensions
Mature Cloud Native Practices
Infrastructure as Code
# Terraform - Mature IaC pattern
module "aks_cluster" {
source = "./modules/aks"
cluster_name = var.cluster_name
resource_group_name = azurerm_resource_group.main.name
location = var.location
# GitOps configuration
flux_enabled = true
flux_repo = "https://github.com/company/k8s-config"
# Network configuration
vnet_subnet_id = module.network.aks_subnet_id
pod_cidr = "10.244.0.0/16"
service_cidr = "10.0.0.0/16"
# Node pools
node_pools = [
{
name = "system"
node_count = 3
vm_size = "Standard_D4s_v3"
os_disk_size = 100
node_labels = { "nodepool-type" = "system" }
},
{
name = "workload"
node_count = 5
vm_size = "Standard_D8s_v3"
auto_scaling = true
min_count = 3
max_count = 10
node_labels = { "nodepool-type" = "workload" }
}
]
# Security
enable_azure_policy = true
enable_defender = true
enable_workload_identity = true
tags = var.tags
}
GitOps Deployment
# Flux Kustomization
apiVersion: kustomize.toolkit.fluxcd.io/v1beta2
kind: Kustomization
metadata:
name: apps
namespace: flux-system
spec:
interval: 10m
sourceRef:
kind: GitRepository
name: flux-system
path: ./apps/production
prune: true
healthChecks:
- apiVersion: apps/v1
kind: Deployment
name: frontend
namespace: production
- apiVersion: apps/v1
kind: Deployment
name: api
namespace: production
postBuild:
substitute:
cluster_env: production
substituteFrom:
- kind: ConfigMap
name: cluster-config
Progressive Delivery
# Flagger Canary deployment
apiVersion: flagger.app/v1beta1
kind: Canary
metadata:
name: api
namespace: production
spec:
targetRef:
apiVersion: apps/v1
kind: Deployment
name: api
progressDeadlineSeconds: 60
service:
port: 80
targetPort: 8080
analysis:
interval: 1m
threshold: 5
maxWeight: 50
stepWeight: 10
metrics:
- name: request-success-rate
thresholdRange:
min: 99
interval: 1m
- name: request-duration
thresholdRange:
max: 500
interval: 1m
webhooks:
- name: load-test
url: http://loadtester/
timeout: 5s
metadata:
type: cmd
cmd: "hey -z 1m -q 10 -c 2 http://api.production/"
Observability Stack
# OpenTelemetry Collector configuration
receivers:
otlp:
protocols:
grpc:
endpoint: 0.0.0.0:4317
http:
endpoint: 0.0.0.0:4318
prometheus:
config:
scrape_configs:
- job_name: 'kubernetes-pods'
kubernetes_sd_configs:
- role: pod
processors:
batch:
timeout: 1s
send_batch_size: 1024
memory_limiter:
check_interval: 1s
limit_mib: 1000
attributes:
actions:
- key: environment
value: production
action: insert
exporters:
azuremonitor:
connection_string: ${APPLICATIONINSIGHTS_CONNECTION_STRING}
prometheus:
endpoint: 0.0.0.0:8889
service:
pipelines:
traces:
receivers: [otlp]
processors: [memory_limiter, batch, attributes]
exporters: [azuremonitor]
metrics:
receivers: [otlp, prometheus]
processors: [memory_limiter, batch]
exporters: [azuremonitor, prometheus]
Platform Engineering
The emerging discipline of building internal developer platforms:
# Backstage Software Catalog entry
apiVersion: backstage.io/v1alpha1
kind: Component
metadata:
name: order-service
description: Handles order processing
annotations:
github.com/project-slug: company/order-service
backstage.io/techdocs-ref: dir:.
azure.com/application-insights: order-service-prod
spec:
type: service
lifecycle: production
owner: team-commerce
system: e-commerce
providesApis:
- order-api
consumesApis:
- inventory-api
- payment-api
dependsOn:
- resource:default/orders-db
- resource:default/orders-cache
---
apiVersion: backstage.io/v1alpha1
kind: API
metadata:
name: order-api
description: Order management API
spec:
type: openapi
lifecycle: production
owner: team-commerce
definition:
$text: ./openapi.yaml
Where Most Organizations Are
Based on 2022 observations:
| Dimension | Average Level | Leaders |
|---|---|---|
| Infrastructure | 2.5 | 4.0 |
| Architecture | 2.0 | 3.5 |
| Deployment | 2.5 | 4.5 |
| Observability | 2.0 | 4.0 |
| Security | 2.0 | 3.5 |
Path Forward
roadmap = {
"Q1_2023": [
"Complete IaC migration",
"Implement GitOps for core services",
"Establish SLO framework"
],
"Q2_2023": [
"Service mesh for critical paths",
"Progressive delivery adoption",
"Platform engineering initiative"
],
"Q3_2023": [
"Developer self-service portal",
"Full observability stack",
"Chaos engineering program"
],
"Q4_2023": [
"FinOps optimization",
"AIOps integration",
"Continuous improvement culture"
]
}
Conclusion
Cloud native maturity varies widely across organizations. Most are between levels 2-3, with clear opportunities to advance. The key is incremental progress - you don’t need to reach level 5 to see benefits. Focus on the dimensions that matter most for your business.