Copilot for Pull Requests: AI-Enhanced Code Review
Copilot for Pull Requests automates the tedious parts of code review while ensuring thorough analysis. Auto-generated descriptions, intelligent reviewer suggestions, and AI-powered feedback transform the PR process.
Auto-Generated PR Descriptions
When you create a PR, Copilot analyzes your changes and generates a comprehensive description:
class PRDescriptionGenerator:
"""Generate PR descriptions from code changes."""
def __init__(self, client, github_api):
self.client = client
self.github = github_api
async def generate_description(
self,
owner: str,
repo: str,
base: str,
head: str
) -> dict:
"""Generate PR description from branch comparison."""
# Get diff
diff = await self.github.compare(owner, repo, base, head)
# Get commit messages
commits = await self.github.get_commits(owner, repo, base, head)
commit_messages = [c["message"] for c in commits]
# Analyze changes
analysis = await self._analyze_changes(diff, commit_messages)
# Generate description
description = await self._generate_description(analysis)
return {
"title": description["title"],
"body": description["body"],
"labels": description.get("suggested_labels", []),
"reviewers": description.get("suggested_reviewers", [])
}
async def _analyze_changes(
self,
diff: str,
commits: list[str]
) -> dict:
"""Analyze what changed and why."""
prompt = f"""Analyze these code changes.
Diff (truncated):
```diff
{diff[:8000]}
Commit messages: {chr(10).join(f’- {c}’ for c in commits)}
Determine:
- Type of change (feature/bugfix/refactor/docs/test)
- Main components affected
- Key changes made
- Potential impact
- Risk level (low/medium/high)
Return as JSON."""
response = await self.client.chat_completion(
model="gpt-4",
messages=[{"role": "user", "content": prompt}],
temperature=0.1
)
import json
try:
return json.loads(response.content)
except:
return {"type": "unknown", "changes": diff[:500]}
async def _generate_description(self, analysis: dict) -> dict:
"""Generate markdown description."""
prompt = f"""Generate a PR description from this analysis.
Analysis: {json.dumps(analysis, indent=2)}
Create:
- Concise title (max 72 chars, format: “type: description”)
- Summary section
- Changes section with bullet points
- Testing section
- Checklist for reviewer
Format as markdown."""
response = await self.client.chat_completion(
model="gpt-4",
messages=[{"role": "user", "content": prompt}]
)
# Extract title (first line) and body
lines = response.content.split("\n")
title = lines[0].replace("# ", "").strip()
body = "\n".join(lines[1:]).strip()
return {"title": title, "body": body}
## AI Code Review
```python
class AICodeReviewer:
"""Automated code review using AI."""
def __init__(self, client):
self.client = client
self.review_categories = [
"correctness",
"security",
"performance",
"maintainability",
"testing"
]
async def review_pr(
self,
diff: str,
context_files: dict = None
) -> dict:
"""Perform comprehensive code review."""
reviews = {}
for category in self.review_categories:
reviews[category] = await self._review_category(
diff, category, context_files
)
# Aggregate findings
all_comments = []
for category, review in reviews.items():
for finding in review.get("findings", []):
all_comments.append({
"category": category,
**finding
})
# Sort by severity
severity_order = {"critical": 0, "high": 1, "medium": 2, "low": 3}
all_comments.sort(key=lambda x: severity_order.get(x.get("severity", "low"), 4))
return {
"summary": await self._generate_summary(reviews),
"comments": all_comments,
"approve": not any(c["severity"] in ["critical", "high"] for c in all_comments)
}
async def _review_category(
self,
diff: str,
category: str,
context: dict = None
) -> dict:
"""Review for specific category."""
prompts = {
"correctness": "Check for logic errors, bugs, and incorrect implementations",
"security": "Check for security vulnerabilities, injection risks, auth issues",
"performance": "Check for performance issues, N+1 queries, memory leaks",
"maintainability": "Check for code clarity, naming, documentation",
"testing": "Check for test coverage, edge cases, test quality"
}
prompt = f"""Review this code diff for {category} issues.
Focus: {prompts[category]}
Diff:
```diff
{diff[:10000]}
For each issue found, provide:
- file: filename
- line: line number (from diff)
- severity: critical/high/medium/low
- issue: description
- suggestion: how to fix
Return JSON: {{“findings”: […]}}"""
response = await self.client.chat_completion(
model="gpt-4",
messages=[
{"role": "system", "content": f"You are an expert code reviewer focusing on {category}."},
{"role": "user", "content": prompt}
],
temperature=0.1
)
import json
try:
return json.loads(response.content)
except:
return {"findings": []}
async def _generate_summary(self, reviews: dict) -> str:
"""Generate review summary."""
total_findings = sum(len(r.get("findings", [])) for r in reviews.values())
if total_findings == 0:
return "LGTM! No significant issues found."
summary_parts = []
for category, review in reviews.items():
findings = review.get("findings", [])
if findings:
summary_parts.append(f"- **{category.title()}**: {len(findings)} issue(s)")
return f"Found {total_findings} issue(s):\n" + "\n".join(summary_parts)
## Intelligent Reviewer Suggestions
```python
class ReviewerSuggester:
"""Suggest reviewers based on code changes."""
def __init__(self, github_api, expertise_db):
self.github = github_api
self.expertise = expertise_db
async def suggest_reviewers(
self,
diff: str,
repo: str,
exclude: list[str] = None
) -> list[dict]:
"""Suggest appropriate reviewers."""
exclude = exclude or []
# Analyze changed areas
changed_files = self._extract_changed_files(diff)
changed_areas = self._categorize_files(changed_files)
# Get contributors for those files
file_contributors = await self._get_file_contributors(
repo, changed_files
)
# Match to expertise database
expertise_matches = self._match_expertise(changed_areas)
# Combine and rank
candidates = {}
for user in set(file_contributors + expertise_matches):
if user in exclude:
continue
score = 0
reasons = []
if user in file_contributors:
score += 3
reasons.append("Previously contributed to changed files")
if user in expertise_matches:
score += 2
reasons.append(f"Expertise in {', '.join(changed_areas)}")
candidates[user] = {"score": score, "reasons": reasons}
# Sort by score
ranked = sorted(
candidates.items(),
key=lambda x: x[1]["score"],
reverse=True
)
return [
{"user": user, **data}
for user, data in ranked[:5]
]
def _extract_changed_files(self, diff: str) -> list[str]:
"""Extract file paths from diff."""
import re
files = re.findall(r'^\+\+\+ b/(.+)$', diff, re.MULTILINE)
return files
def _categorize_files(self, files: list[str]) -> list[str]:
"""Categorize files by area."""
areas = set()
for f in files:
if "/api/" in f:
areas.add("api")
if "/models/" in f or "model" in f:
areas.add("models")
if "/test" in f:
areas.add("testing")
if ".sql" in f or "/db/" in f:
areas.add("database")
if ".css" in f or ".tsx" in f or ".jsx" in f:
areas.add("frontend")
return list(areas)
Automated PR Labeling
class PRLabeler:
"""Automatically label PRs based on content."""
async def suggest_labels(
self,
diff: str,
title: str,
description: str
) -> list[str]:
"""Suggest labels for PR."""
prompt = f"""Suggest labels for this pull request.
Title: {title}
Description: {description[:1000]}
Changes (sample):
```diff
{diff[:3000]}
Available labels:
- bug: Bug fixes
- feature: New features
- enhancement: Improvements
- documentation: Doc changes
- refactor: Code refactoring
- test: Test additions/changes
- security: Security fixes
- breaking: Breaking changes
- dependencies: Dependency updates
- size/small: <100 lines
- size/medium: 100-500 lines
- size/large: >500 lines
Return JSON array of applicable labels."""
response = await self.client.chat_completion(
model="gpt-35-turbo",
messages=[{"role": "user", "content": prompt}],
temperature=0
)
import json
try:
return json.loads(response.content)
except:
return ["needs-review"]
## Integration Example
```python
class CopilotPRWorkflow:
"""Complete Copilot-powered PR workflow."""
def __init__(self, client, github_api):
self.description_gen = PRDescriptionGenerator(client, github_api)
self.reviewer = AICodeReviewer(client)
self.suggester = ReviewerSuggester(github_api, None)
self.labeler = PRLabeler()
async def process_new_pr(
self,
owner: str,
repo: str,
pr_number: int
) -> dict:
"""Process a new PR with AI assistance."""
# Get PR details
pr = await self.github.get_pr(owner, repo, pr_number)
# Generate or improve description
if not pr["body"] or len(pr["body"]) < 50:
description = await self.description_gen.generate_description(
owner, repo, pr["base"], pr["head"]
)
await self.github.update_pr(owner, repo, pr_number, description)
# Suggest reviewers
reviewers = await self.suggester.suggest_reviewers(
pr["diff"], f"{owner}/{repo}", exclude=[pr["author"]]
)
await self.github.request_reviewers(
owner, repo, pr_number,
[r["user"] for r in reviewers[:2]]
)
# Auto-label
labels = await self.labeler.suggest_labels(
pr["diff"], pr["title"], pr["body"]
)
await self.github.add_labels(owner, repo, pr_number, labels)
# Initial review
review = await self.reviewer.review_pr(pr["diff"])
# Post review comments
for comment in review["comments"]:
await self.github.create_review_comment(
owner, repo, pr_number, comment
)
return {
"description_generated": True,
"reviewers_suggested": reviewers,
"labels_added": labels,
"review_posted": True,
"auto_approve": review["approve"]
}
Copilot for Pull Requests streamlines code review while maintaining quality. The combination of auto-generated descriptions, intelligent reviewers, and AI-powered feedback makes the PR process faster and more thorough.