4 min read
Seed Parameter: Achieving Reproducible LLM Outputs
Seed Parameter: Achieving Reproducible LLM Outputs
Reproducibility has been one of the biggest challenges in LLM applications. The new seed parameter in GPT-4 Turbo brings deterministic outputs, enabling consistent testing and debugging.
Understanding the Seed Parameter
When you provide a seed value, the model attempts to return the same response for identical requests:
from openai import OpenAI
client = OpenAI()
def generate_with_seed(prompt: str, seed: int) -> tuple[str, str]:
"""Generate response with seed for reproducibility."""
response = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=[
{"role": "user", "content": prompt}
],
seed=seed,
temperature=0 # Combine with low temperature for best results
)
return (
response.choices[0].message.content,
response.system_fingerprint # Track model version
)
# Generate with same seed multiple times
prompt = "Write a haiku about programming"
seed = 42
result1, fingerprint1 = generate_with_seed(prompt, seed)
result2, fingerprint2 = generate_with_seed(prompt, seed)
print(f"Response 1: {result1}")
print(f"Response 2: {result2}")
print(f"Fingerprints match: {fingerprint1 == fingerprint2}")
print(f"Responses match: {result1 == result2}")
System Fingerprint
The system_fingerprint helps track model versions:
def track_model_consistency(prompt: str, seed: int, expected_fingerprint: str = None):
"""Track model consistency across calls."""
response = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=[{"role": "user", "content": prompt}],
seed=seed
)
current_fingerprint = response.system_fingerprint
if expected_fingerprint and current_fingerprint != expected_fingerprint:
print(f"Warning: Model version changed!")
print(f"Expected: {expected_fingerprint}")
print(f"Current: {current_fingerprint}")
return None, current_fingerprint
return response.choices[0].message.content, current_fingerprint
# Store fingerprint for consistency tracking
_, initial_fingerprint = track_model_consistency("Hello", 42)
print(f"Initial fingerprint: {initial_fingerprint}")
# Later calls can verify consistency
result, _ = track_model_consistency("Hello", 42, initial_fingerprint)
Use Cases for Reproducibility
1. Testing and Validation
import unittest
class TestLLMOutputs(unittest.TestCase):
def setUp(self):
self.client = OpenAI()
self.seed = 12345
def generate(self, prompt: str) -> str:
response = self.client.chat.completions.create(
model="gpt-4-1106-preview",
messages=[{"role": "user", "content": prompt}],
seed=self.seed,
temperature=0
)
return response.choices[0].message.content
def test_sentiment_analysis(self):
"""Test that sentiment analysis is consistent."""
result = self.generate(
"Classify the sentiment of 'I love this product!' as positive, negative, or neutral. Reply with one word."
)
self.assertEqual(result.strip().lower(), "positive")
def test_entity_extraction(self):
"""Test entity extraction consistency."""
result = self.generate(
"Extract the company name from: 'Microsoft announced new AI features'. Reply with just the company name."
)
self.assertEqual(result.strip(), "Microsoft")
if __name__ == "__main__":
unittest.main()
2. A/B Testing Prompts
def compare_prompts(prompts: list, test_inputs: list, seed: int) -> dict:
"""Compare different prompts with consistent outputs."""
results = {i: [] for i in range(len(prompts))}
for test_input in test_inputs:
for idx, prompt_template in enumerate(prompts):
prompt = prompt_template.format(input=test_input)
response = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=[{"role": "user", "content": prompt}],
seed=seed,
temperature=0
)
results[idx].append({
"input": test_input,
"output": response.choices[0].message.content,
"fingerprint": response.system_fingerprint
})
return results
# Compare two prompt strategies
prompts = [
"Summarize this text in one sentence: {input}",
"You are an expert summarizer. Create a concise one-sentence summary: {input}"
]
test_inputs = [
"The quick brown fox jumps over the lazy dog. This is a classic pangram.",
"Machine learning is transforming industries worldwide."
]
comparison = compare_prompts(prompts, test_inputs, seed=42)
3. Debugging and Logging
import logging
from datetime import datetime
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class ReproducibleLLMClient:
def __init__(self, default_seed: int = None):
self.client = OpenAI()
self.default_seed = default_seed
self.call_log = []
def generate(self, prompt: str, seed: int = None) -> str:
"""Generate with full logging for reproducibility."""
effective_seed = seed or self.default_seed
response = self.client.chat.completions.create(
model="gpt-4-1106-preview",
messages=[{"role": "user", "content": prompt}],
seed=effective_seed,
temperature=0
)
log_entry = {
"timestamp": datetime.now().isoformat(),
"prompt": prompt,
"seed": effective_seed,
"fingerprint": response.system_fingerprint,
"response": response.choices[0].message.content,
"usage": {
"prompt_tokens": response.usage.prompt_tokens,
"completion_tokens": response.usage.completion_tokens
}
}
self.call_log.append(log_entry)
logger.info(f"Generated response with seed {effective_seed}, fingerprint {response.system_fingerprint}")
return response.choices[0].message.content
def replay(self, log_entry: dict) -> bool:
"""Replay a logged call and verify consistency."""
new_response = self.generate(log_entry["prompt"], log_entry["seed"])
return new_response == log_entry["response"]
# Usage
llm = ReproducibleLLMClient(default_seed=42)
result = llm.generate("What is 2 + 2?")
# Later, verify reproducibility
is_consistent = llm.replay(llm.call_log[0])
print(f"Output is reproducible: {is_consistent}")
Best Practices
- Always use temperature=0 with seeds for maximum consistency
- Store system fingerprints to detect model updates
- Document seeds used in production for debugging
- Version your prompts alongside seeds
# Configuration management for reproducible LLM calls
LLM_CONFIG = {
"version": "1.0.0",
"model": "gpt-4-1106-preview",
"seeds": {
"classification": 42,
"summarization": 123,
"extraction": 456
},
"expected_fingerprints": {
# Update these when model changes are detected
}
}
Conclusion
The seed parameter transforms LLM development by enabling reproducibility. This is crucial for testing, debugging, and building reliable production systems. Tomorrow, we’ll explore the enhanced function calling capabilities in GPT-4 Turbo!