5 min read
Open Source LLMs: Comparing Llama, Mistral, and Beyond
Open Source LLMs: Comparing Llama, Mistral, and Beyond
The open-source LLM landscape has exploded in 2023. With multiple high-quality models available, choosing the right one for your use case requires understanding their strengths and trade-offs.
The Open Source Landscape
from dataclasses import dataclass
from typing import List, Dict, Optional
from enum import Enum
class ModelFamily(Enum):
LLAMA = "Meta Llama"
MISTRAL = "Mistral AI"
FALCON = "TII Falcon"
MPT = "MosaicML MPT"
QWEN = "Alibaba Qwen"
YI = "01.AI Yi"
@dataclass
class OpenSourceModel:
name: str
family: ModelFamily
parameters: str
context_length: int
license: str
release_date: str
specialties: List[str]
benchmark_mmlu: float
benchmark_humaneval: float
open_source_models = [
OpenSourceModel(
name="Llama-2-70B-Chat",
family=ModelFamily.LLAMA,
parameters="70B",
context_length=4096,
license="Llama 2 Community",
release_date="2023-07",
specialties=["General chat", "Reasoning", "Instruction following"],
benchmark_mmlu=68.9,
benchmark_humaneval=29.9
),
OpenSourceModel(
name="Mixtral-8x7B-Instruct",
family=ModelFamily.MISTRAL,
parameters="46.7B (12.9B active)",
context_length=32768,
license="Apache 2.0",
release_date="2023-12",
specialties=["Long context", "Multilingual", "Efficient inference"],
benchmark_mmlu=70.6,
benchmark_humaneval=40.2
),
OpenSourceModel(
name="Mistral-7B-Instruct",
family=ModelFamily.MISTRAL,
parameters="7B",
context_length=8192,
license="Apache 2.0",
release_date="2023-09",
specialties=["Fast inference", "Cost efficient", "Good base for fine-tuning"],
benchmark_mmlu=60.1,
benchmark_humaneval=30.5
),
OpenSourceModel(
name="Falcon-180B-Chat",
family=ModelFamily.FALCON,
parameters="180B",
context_length=2048,
license="Falcon-180B TII License",
release_date="2023-09",
specialties=["Large scale", "Multilingual"],
benchmark_mmlu=70.4,
benchmark_humaneval=None
),
OpenSourceModel(
name="Qwen-72B-Chat",
family=ModelFamily.QWEN,
parameters="72B",
context_length=32768,
license="Qianwen License",
release_date="2023-11",
specialties=["Chinese-English", "Long context", "Tool use"],
benchmark_mmlu=74.4,
benchmark_humaneval=35.4
)
]
Comprehensive Benchmark Comparison
import pandas as pd
from typing import Dict, List
def create_benchmark_comparison():
"""Create comprehensive benchmark comparison."""
benchmarks = {
"Model": [
"GPT-4 (reference)",
"GPT-3.5-Turbo",
"Llama-2-70B",
"Mixtral-8x7B",
"Mistral-7B",
"Falcon-180B",
"Qwen-72B"
],
"MMLU (knowledge)": [86.4, 70.0, 68.9, 70.6, 60.1, 70.4, 74.4],
"HumanEval (code)": [67.0, 48.1, 29.9, 40.2, 30.5, None, 35.4],
"GSM8K (math)": [92.0, 57.1, 56.8, 60.4, 52.2, None, 61.3],
"ARC (reasoning)": [96.3, 85.2, 67.3, 70.2, 64.5, None, 65.4],
"TruthfulQA": [59.0, 47.0, 45.0, 46.8, 42.1, 40.2, 52.1],
"Context Length": [128000, 16384, 4096, 32768, 8192, 2048, 32768],
"Relative Cost": [1.0, 0.1, 0.05, 0.04, 0.01, 0.08, 0.05]
}
df = pd.DataFrame(benchmarks)
return df
def calculate_value_score(row: pd.Series) -> float:
"""Calculate value score (performance/cost)."""
# Normalize metrics (higher is better)
mmlu_score = row["MMLU (knowledge)"] / 100
code_score = (row["HumanEval (code)"] or 0) / 100
math_score = (row["GSM8K (math)"] or 0) / 100
# Average performance
perf_score = (mmlu_score + code_score + math_score) / 3
# Value = performance / cost
cost = row["Relative Cost"]
if cost == 0:
return 0
return perf_score / cost
# Generate comparison
comparison = create_benchmark_comparison()
comparison["Value Score"] = comparison.apply(calculate_value_score, axis=1)
print(comparison.to_string())
Use Case Decision Tree
def recommend_model(requirements: dict) -> dict:
"""Recommend open source model based on requirements."""
recommendations = {
"model": None,
"reason": "",
"alternatives": [],
"considerations": []
}
# Decision logic
context_needed = requirements.get("context_length", 4096)
budget = requirements.get("budget", "medium") # low, medium, high
task_type = requirements.get("task_type", "general")
language = requirements.get("language", "english")
latency_critical = requirements.get("latency_critical", False)
needs_fine_tuning = requirements.get("needs_fine_tuning", False)
# Long context requirement
if context_needed > 8192:
if budget == "low":
recommendations["model"] = "Mixtral-8x7B-Instruct"
recommendations["reason"] = "Best long-context performance at low cost"
else:
recommendations["model"] = "Qwen-72B-Chat"
recommendations["reason"] = "Highest quality with 32K context"
recommendations["alternatives"].append("Llama-2-70B with context extension")
# Latency critical
elif latency_critical:
recommendations["model"] = "Mistral-7B-Instruct"
recommendations["reason"] = "Fastest inference, good quality for simple tasks"
recommendations["alternatives"].append("Llama-2-7B-Chat")
# Code generation
elif task_type == "code":
recommendations["model"] = "Mixtral-8x7B-Instruct"
recommendations["reason"] = "Best code generation among open models"
recommendations["alternatives"].extend(["CodeLlama-34B", "Llama-2-70B"])
# Fine-tuning needed
elif needs_fine_tuning:
if budget == "low":
recommendations["model"] = "Mistral-7B"
recommendations["reason"] = "Apache 2.0 license, efficient fine-tuning"
else:
recommendations["model"] = "Llama-2-13B"
recommendations["reason"] = "Good balance of capability and fine-tuning cost"
# Chinese language
elif "chinese" in language.lower():
recommendations["model"] = "Qwen-72B-Chat"
recommendations["reason"] = "Superior Chinese language capabilities"
# General purpose
else:
if budget == "high":
recommendations["model"] = "Llama-2-70B-Chat"
recommendations["reason"] = "Best general performance among open models"
else:
recommendations["model"] = "Mixtral-8x7B-Instruct"
recommendations["reason"] = "Near-GPT-3.5 performance at fraction of cost"
# Add considerations
recommendations["considerations"] = [
"Test on your specific use case before production",
"Consider fine-tuning for domain-specific tasks",
"Monitor for quality issues compared to proprietary models",
"Check license compatibility with your use case"
]
return recommendations
# Example usage
reqs = {
"context_length": 8000,
"budget": "medium",
"task_type": "customer_support",
"language": "english",
"latency_critical": True
}
recommendation = recommend_model(reqs)
print(f"Recommended: {recommendation['model']}")
print(f"Reason: {recommendation['reason']}")
Self-Hosting Considerations
def calculate_infrastructure_requirements(model_size: str) -> dict:
"""Calculate infrastructure needs for self-hosting."""
# Approximate requirements for inference
requirements = {
"7B": {
"gpu": "1x A10 (24GB) or 1x A100 (40GB)",
"memory_required_gb": 14,
"estimated_monthly_cost_azure": 1500,
"throughput_tokens_per_sec": 50,
"quantization_options": ["4-bit", "8-bit", "fp16"]
},
"13B": {
"gpu": "1x A100 (40GB) or 2x A10",
"memory_required_gb": 26,
"estimated_monthly_cost_azure": 2500,
"throughput_tokens_per_sec": 30,
"quantization_options": ["4-bit", "8-bit"]
},
"70B": {
"gpu": "2x A100 (80GB) or 8x A10",
"memory_required_gb": 140,
"estimated_monthly_cost_azure": 8000,
"throughput_tokens_per_sec": 10,
"quantization_options": ["4-bit", "8-bit"]
}
}
return requirements.get(model_size, requirements["13B"])
def compare_hosting_vs_api():
"""Compare self-hosting vs API costs."""
analysis = """
# Self-Hosting vs API Cost Analysis
## API (e.g., Azure OpenAI GPT-3.5-Turbo)
- $0.002 per 1K tokens
- No infrastructure management
- Scales automatically
- Break-even at ~750M tokens/month
## Self-Hosted Mistral-7B (1x A100)
- ~$2,500/month infrastructure
- Can process unlimited tokens
- Requires DevOps expertise
- Better for high-volume, predictable workloads
## Recommendation
- < 500M tokens/month: Use API
- > 1B tokens/month: Consider self-hosting
- Variable load: Use API with self-hosted fallback
"""
return analysis
Best Practices
- Benchmark on your data - Public benchmarks don’t tell the full story
- Start small, scale up - Begin with 7B models, increase if needed
- Consider quantization - 4-bit models offer good quality/cost trade-off
- Plan for fine-tuning - Choose models with permissive licenses
- Monitor quality - Set up evaluation pipelines
Tomorrow, we’ll dive into model benchmarking methodologies and how to evaluate models for your specific needs!