5 min read
Power BI April 2024 Updates: AI-Powered Analytics
Power BI April 2024 Updates: AI-Powered Analytics
Power BI continues to evolve with AI-driven features that make data analysis more accessible. Here’s what’s new in April 2024.
Key Updates Overview
POWER_BI_APRIL_2024 = {
"copilot_features": [
"Report page generation from prompts",
"Visual recommendations",
"DAX suggestions",
"Narrative generation"
],
"visualization": [
"New chart types",
"Enhanced formatting options",
"Improved mobile experience"
],
"modeling": [
"Enhanced calculation groups",
"Improved relationships",
"Better DirectQuery performance"
],
"collaboration": [
"Improved sharing",
"Better embedding options",
"Enhanced security"
]
}
Copilot in Power BI
Power BI Copilot now supports more sophisticated interactions:
# Example: Using Copilot APIs (when available)
# These demonstrate the types of interactions possible
COPILOT_PROMPTS = {
"create_visual": "Create a bar chart showing sales by region for 2024",
"add_filter": "Add a slicer for product category",
"create_measure": "Create a measure for year-over-year growth",
"explain_data": "Why did sales drop in March?",
"suggest_visuals": "What visualizations would help analyze customer churn?"
}
# Copilot generates visuals based on data model understanding
# Example response for "Create a bar chart showing sales by region":
visual_config = {
"type": "clusteredBarChart",
"data": {
"categories": "Geography[Region]",
"values": "[Total Sales]"
},
"format": {
"title": "Sales by Region - 2024",
"dataLabels": True,
"legend": False
}
}
Working with Power BI REST API
import requests
from azure.identity import DefaultAzureCredential
class PowerBIClient:
"""Client for Power BI REST API"""
def __init__(self):
self.credential = DefaultAzureCredential()
self.base_url = "https://api.powerbi.com/v1.0/myorg"
def _get_headers(self):
token = self.credential.get_token(
"https://analysis.windows.net/powerbi/api/.default"
)
return {
"Authorization": f"Bearer {token.token}",
"Content-Type": "application/json"
}
def list_workspaces(self):
"""List all workspaces"""
response = requests.get(
f"{self.base_url}/groups",
headers=self._get_headers()
)
return response.json().get("value", [])
def list_reports(self, workspace_id: str):
"""List reports in workspace"""
response = requests.get(
f"{self.base_url}/groups/{workspace_id}/reports",
headers=self._get_headers()
)
return response.json().get("value", [])
def list_datasets(self, workspace_id: str):
"""List datasets in workspace"""
response = requests.get(
f"{self.base_url}/groups/{workspace_id}/datasets",
headers=self._get_headers()
)
return response.json().get("value", [])
def refresh_dataset(self, workspace_id: str, dataset_id: str):
"""Trigger dataset refresh"""
response = requests.post(
f"{self.base_url}/groups/{workspace_id}/datasets/{dataset_id}/refreshes",
headers=self._get_headers()
)
return response.status_code == 202
def execute_queries(self, workspace_id: str, dataset_id: str, query: str):
"""Execute DAX query"""
response = requests.post(
f"{self.base_url}/groups/{workspace_id}/datasets/{dataset_id}/executeQueries",
headers=self._get_headers(),
json={
"queries": [{"query": query}],
"serializerSettings": {"includeNulls": True}
}
)
return response.json()
# Usage
client = PowerBIClient()
# List workspaces
workspaces = client.list_workspaces()
for ws in workspaces:
print(f"Workspace: {ws['name']}")
# Execute DAX query
result = client.execute_queries(
workspace_id="workspace-id",
dataset_id="dataset-id",
query="EVALUATE SUMMARIZE(Sales, 'Product'[Category], \"Total\", SUM(Sales[Amount]))"
)
New Visualization Features
# New chart configurations available in April 2024
NEW_VISUAL_FEATURES = {
"small_multiples": {
"description": "Create grid of charts by category",
"config": {
"rows": "Category",
"columns": "Year",
"visual": "lineChart"
}
},
"anomaly_detection": {
"description": "Automatic anomaly highlighting in line charts",
"config": {
"enabled": True,
"sensitivity": 90,
"explainBy": ["Category", "Region"]
}
},
"dynamic_format_strings": {
"description": "Conditional formatting based on values",
"config": {
"positive": "#00FF00",
"negative": "#FF0000",
"neutral": "#808080"
}
}
}
# DAX for dynamic formatting
dynamic_format_dax = """
VAR SalesGrowth = [Sales YoY %]
RETURN
IF(
SalesGrowth >= 0,
FORMAT(SalesGrowth, "+0.0%"),
FORMAT(SalesGrowth, "0.0%")
)
"""
Enhanced DAX Capabilities
# New DAX patterns and functions
# Calculation Groups (enhanced in April 2024)
calculation_group_dax = """
-- Time Intelligence Calculation Group
CALCULATIONGROUP 'Time Intelligence'
CALCULATIONITEM "Current Period" = SELECTEDMEASURE()
CALCULATIONITEM "Prior Period" =
CALCULATE(
SELECTEDMEASURE(),
DATEADD('Calendar'[Date], -1, YEAR)
)
CALCULATIONITEM "YoY Change" =
VAR CurrentValue = SELECTEDMEASURE()
VAR PriorValue = CALCULATE(
SELECTEDMEASURE(),
DATEADD('Calendar'[Date], -1, YEAR)
)
RETURN
DIVIDE(CurrentValue - PriorValue, PriorValue)
CALCULATIONITEM "Rolling 12M" =
CALCULATE(
SELECTEDMEASURE(),
DATESINPERIOD('Calendar'[Date], MAX('Calendar'[Date]), -12, MONTH)
)
"""
# Field Parameters (for dynamic axis/legend)
field_parameter_dax = """
Metric Selection = {
("Sales", NAMEOF([Total Sales]), 0),
("Quantity", NAMEOF([Total Quantity]), 1),
("Profit", NAMEOF([Total Profit]), 2),
("Margin %", NAMEOF([Profit Margin %]), 3)
}
"""
Embedding Power BI
from typing import Optional
import requests
class PowerBIEmbed:
"""Generate embed tokens for Power BI content"""
def __init__(self, client: PowerBIClient):
self.client = client
self.base_url = "https://api.powerbi.com/v1.0/myorg"
def get_embed_token(
self,
workspace_id: str,
report_id: str,
dataset_ids: list = None,
access_level: str = "View"
) -> dict:
"""Generate embed token for report"""
payload = {
"accessLevel": access_level,
"allowSaveAs": access_level == "Edit"
}
if dataset_ids:
payload["datasetIds"] = dataset_ids
response = requests.post(
f"{self.base_url}/groups/{workspace_id}/reports/{report_id}/GenerateToken",
headers=self.client._get_headers(),
json=payload
)
return response.json()
def get_embed_url(self, workspace_id: str, report_id: str) -> str:
"""Get embed URL for report"""
report = requests.get(
f"{self.base_url}/groups/{workspace_id}/reports/{report_id}",
headers=self.client._get_headers()
).json()
return report.get("embedUrl")
# Embed configuration for frontend
embed_config = {
"type": "report",
"tokenType": "Embed",
"accessToken": "embed-token-here",
"embedUrl": "https://app.powerbi.com/reportEmbed...",
"id": "report-id",
"settings": {
"filterPaneEnabled": True,
"navContentPaneEnabled": True,
"layoutType": "custom",
"customLayout": {
"displayOption": "fitToWidth"
}
}
}
Performance Optimization
# Best practices for Power BI performance
PERFORMANCE_TIPS = {
"data_model": [
"Use star schema design",
"Remove unnecessary columns",
"Use appropriate data types",
"Create relationships properly"
],
"dax": [
"Use variables to avoid recalculation",
"Prefer CALCULATE over FILTER",
"Use TREATAS for virtual relationships",
"Avoid DISTINCTCOUNT on high cardinality"
],
"visuals": [
"Limit visuals per page to 8-10",
"Use bookmarks for complex filters",
"Enable query reduction settings",
"Use aggregations for large datasets"
]
}
# Example: Optimized DAX measure
optimized_measure = """
Sales with Discount =
VAR DiscountRate = 0.1
VAR BaseSales = SUM(Sales[Amount])
VAR DiscountedItems =
CALCULATE(
SUM(Sales[Amount]),
Sales[HasDiscount] = TRUE()
)
RETURN
BaseSales - (DiscountedItems * DiscountRate)
"""
Conclusion
Power BI’s April 2024 updates enhance AI-assisted analytics with Copilot improvements, new visualization capabilities, and better performance features. Take advantage of these updates to build more insightful reports.