The Future of Multimodal AI: What's Next After GPT-4 Vision
Multimodal AI is evolving rapidly. GPT-4 Vision showed us the power of combining text and image understanding. Today, let’s explore what’s possible now and what the future might hold.
Current Multimodal Architecture
Traditional multimodal systems work like this:
Audio -> Speech-to-Text -> LLM -> Text-to-Speech -> Audio
Image -> Vision Encoder -> LLM -> Text
Each modality is handled separately, then combined. This works, but has latency and integration challenges.
GPT-4 Vision Today
GPT-4V can analyze images alongside text:
from openai import AzureOpenAI
import base64
import os
client = AzureOpenAI(
api_version="2024-02-15-preview",
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
api_key=os.environ["AZURE_OPENAI_KEY"]
)
def analyze_image(image_path, prompt):
with open(image_path, "rb") as f:
image_data = base64.b64encode(f.read()).decode("utf-8")
response = client.chat.completions.create(
model="gpt-4-vision-preview",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{image_data}",
"detail": "high"
}
}
]
}
],
max_tokens=1000
)
return response.choices[0].message.content
Image Detail Levels
GPT-4V supports different detail levels:
| Detail | Tokens | Use Case |
|---|---|---|
low | 85 | Quick classification |
high | 85 + 170/tile | Detailed analysis |
auto | Varies | Let model decide |
def estimate_tokens(width, height, detail="auto"):
if detail == "low":
return 85
# Scale down if needed
if max(width, height) > 2048:
ratio = 2048 / max(width, height)
width = int(width * ratio)
height = int(height * ratio)
if min(width, height) > 768:
ratio = 768 / min(width, height)
width = int(width * ratio)
height = int(height * ratio)
tiles_x = (width + 511) // 512
tiles_y = (height + 511) // 512
return 85 + (170 * tiles_x * tiles_y)
Document Processing Pipeline
Processing invoices, receipts, and forms:
import asyncio
from dataclasses import dataclass
from typing import List
import json
@dataclass
class InvoiceData:
vendor: str
invoice_number: str
date: str
total: float
line_items: List[dict]
async def process_invoice(image_path: str) -> InvoiceData:
prompt = """Extract invoice data in JSON format:
{
"vendor": "company name",
"invoice_number": "INV-XXX",
"date": "YYYY-MM-DD",
"total": 0.00,
"line_items": [
{"description": "", "quantity": 0, "unit_price": 0.00, "total": 0.00}
]
}
Return only valid JSON."""
with open(image_path, "rb") as f:
image_data = base64.b64encode(f.read()).decode("utf-8")
response = await asyncio.to_thread(
client.chat.completions.create,
model="gpt-4-vision-preview",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{image_data}",
"detail": "high"
}
}
]
}
],
max_tokens=1000
)
data = json.loads(response.choices[0].message.content)
return InvoiceData(**data)
The Future: Unified Multimodal Models
The industry is moving toward models that process all modalities natively:
Audio/Image/Text -> Single Unified Model -> Audio/Image/Text
This end-to-end training means the model understands relationships across modalities that separate models miss.
Expected Benefits
- Lower latency: No pipeline overhead
- Better understanding: Cross-modal relationships preserved
- Simpler integration: One API for everything
- Cost efficiency: Fewer separate services
Preparing for the Future
Build abstractions that can adapt:
class MultimodalClient:
"""Abstraction for multimodal AI that can evolve"""
def __init__(self, client, vision_model: str = "gpt-4-vision-preview"):
self.client = client
self.vision_model = vision_model
def analyze_with_image(self, text: str, image_base64: str) -> str:
response = self.client.chat.completions.create(
model=self.vision_model,
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": text},
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{image_base64}"}
}
]
}
],
max_tokens=1000
)
return response.choices[0].message.content
def upgrade_model(self, new_model: str):
"""Ready for future multimodal models"""
self.vision_model = new_model
Best Practices Today
- Optimize image size - Resize before sending to reduce tokens
- Use appropriate detail level - Low for classification, high for extraction
- Batch requests - Process multiple images concurrently
- Cache results - Store analysis results to avoid reprocessing
- Handle errors gracefully - Images may fail validation
What’s Next
The AI landscape is evolving rapidly. Keep an eye on:
- Microsoft Build announcements (May 21-23)
- OpenAI updates
- Azure OpenAI new model deployments
Tomorrow I’ll cover current best practices for voice AI integration.