Back to Blog
5 min read

Anthropic Models Coming to Azure: What It Means

Microsoft announced that Anthropic’s Claude models will be available through Azure. This is significant for enterprise customers who want Claude’s capabilities within their existing Azure infrastructure. Let me break down what this means and how to prepare.

The Azure Advantage

Enterprise Integration

Having Claude on Azure means:

  • Single billing relationship
  • VNet integration and private endpoints
  • Azure AD authentication
  • Compliance certifications (SOC 2, HIPAA, etc.)
  • Regional data residency

For organizations already invested in Azure, this eliminates the complexity of managing another vendor relationship.

Current State

As of July 2024, Claude is available through:

  • Direct Anthropic API
  • Amazon Bedrock
  • Google Cloud Vertex AI (Claude 3)

Azure availability will add another deployment option with Azure-specific benefits.

Preparing Your Architecture

Start designing for model flexibility now:

from abc import ABC, abstractmethod
from typing import Generator
import os

class LLMProvider(ABC):
    @abstractmethod
    def complete(self, prompt: str, **kwargs) -> str:
        pass

    @abstractmethod
    def stream(self, prompt: str, **kwargs) -> Generator[str, None, None]:
        pass

class AzureOpenAIProvider(LLMProvider):
    def __init__(self):
        from openai import AzureOpenAI
        self.client = AzureOpenAI(
            azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
            api_version="2024-05-01-preview"
        )
        self.deployment = os.environ["AZURE_OPENAI_DEPLOYMENT"]

    def complete(self, prompt: str, **kwargs) -> str:
        response = self.client.chat.completions.create(
            model=self.deployment,
            messages=[{"role": "user", "content": prompt}],
            **kwargs
        )
        return response.choices[0].message.content

    def stream(self, prompt: str, **kwargs) -> Generator[str, None, None]:
        response = self.client.chat.completions.create(
            model=self.deployment,
            messages=[{"role": "user", "content": prompt}],
            stream=True,
            **kwargs
        )
        for chunk in response:
            if chunk.choices[0].delta.content:
                yield chunk.choices[0].delta.content

class AnthropicProvider(LLMProvider):
    def __init__(self):
        import anthropic
        self.client = anthropic.Anthropic()
        self.model = "claude-3-5-sonnet-20240620"

    def complete(self, prompt: str, **kwargs) -> str:
        response = self.client.messages.create(
            model=self.model,
            max_tokens=kwargs.get("max_tokens", 4096),
            messages=[{"role": "user", "content": prompt}]
        )
        return response.content[0].text

    def stream(self, prompt: str, **kwargs) -> Generator[str, None, None]:
        with self.client.messages.stream(
            model=self.model,
            max_tokens=kwargs.get("max_tokens", 4096),
            messages=[{"role": "user", "content": prompt}]
        ) as stream:
            for text in stream.text_stream:
                yield text

class AzureClaudeProvider(LLMProvider):
    """Placeholder for Azure-hosted Claude when available"""
    def __init__(self):
        # Will use Azure SDK when available
        self.endpoint = os.environ.get("AZURE_CLAUDE_ENDPOINT")
        self.api_key = os.environ.get("AZURE_CLAUDE_KEY")

    def complete(self, prompt: str, **kwargs) -> str:
        # Implementation will follow Azure's SDK pattern
        raise NotImplementedError("Azure Claude not yet available")

    def stream(self, prompt: str, **kwargs) -> Generator[str, None, None]:
        raise NotImplementedError("Azure Claude not yet available")

def get_provider(provider_name: str) -> LLMProvider:
    providers = {
        "azure_openai": AzureOpenAIProvider,
        "anthropic": AnthropicProvider,
        "azure_claude": AzureClaudeProvider,
    }
    return providers[provider_name]()

Enterprise Considerations

Data Residency

Azure provides regional deployment options. When Claude comes to Azure, expect:

  • US regions initially
  • European regions for GDPR compliance
  • Potentially other regions based on demand

Network Security

Prepare your network architecture:

// Private endpoint for AI services
resource privateEndpoint 'Microsoft.Network/privateEndpoints@2023-05-01' = {
  name: 'pe-ai-services'
  location: location
  properties: {
    subnet: {
      id: subnet.id
    }
    privateLinkServiceConnections: [
      {
        name: 'ai-services-connection'
        properties: {
          privateLinkServiceId: aiService.id
          groupIds: ['account']
        }
      }
    ]
  }
}

// DNS zone for private resolution
resource privateDnsZone 'Microsoft.Network/privateDnsZones@2020-06-01' = {
  name: 'privatelink.cognitiveservices.azure.com'
  location: 'global'
}

Cost Management

Set up monitoring for AI spending:

from azure.monitor.query import LogsQueryClient
from azure.identity import DefaultAzureCredential
from datetime import timedelta

def get_ai_costs(workspace_id: str, days: int = 30):
    credential = DefaultAzureCredential()
    client = LogsQueryClient(credential)

    query = """
    AzureDiagnostics
    | where ResourceProvider == "MICROSOFT.COGNITIVESERVICES"
    | where Category == "RequestResponse"
    | extend tokens = toint(properties_s.totalTokens)
    | summarize
        TotalRequests = count(),
        TotalTokens = sum(tokens),
        AvgTokensPerRequest = avg(tokens)
        by bin(TimeGenerated, 1d), Resource
    | order by TimeGenerated desc
    """

    response = client.query_workspace(
        workspace_id,
        query,
        timespan=timedelta(days=days)
    )

    return response.tables[0].rows

Migration Planning

When Azure Claude becomes available, migration steps:

1. Parallel Deployment

Run both providers simultaneously:

class DualProvider:
    def __init__(self, primary: LLMProvider, secondary: LLMProvider):
        self.primary = primary
        self.secondary = secondary
        self.comparison_mode = False

    def complete(self, prompt: str, **kwargs) -> str:
        primary_result = self.primary.complete(prompt, **kwargs)

        if self.comparison_mode:
            secondary_result = self.secondary.complete(prompt, **kwargs)
            self._log_comparison(prompt, primary_result, secondary_result)

        return primary_result

    def _log_comparison(self, prompt, result1, result2):
        # Log for quality comparison
        pass

2. Gradual Traffic Shift

import random

class TrafficRouter:
    def __init__(self, providers: dict[str, LLMProvider]):
        self.providers = providers
        self.weights = {"azure_openai": 0.8, "azure_claude": 0.2}

    def route(self, prompt: str, **kwargs) -> str:
        provider_name = random.choices(
            list(self.weights.keys()),
            weights=list(self.weights.values())
        )[0]

        return self.providers[provider_name].complete(prompt, **kwargs)

    def adjust_weights(self, new_weights: dict[str, float]):
        self.weights = new_weights

3. Quality Monitoring

Track performance across providers:

from dataclasses import dataclass
from datetime import datetime
import json

@dataclass
class CompletionMetrics:
    provider: str
    prompt_hash: str
    latency_ms: float
    input_tokens: int
    output_tokens: int
    timestamp: datetime
    success: bool
    error_message: str = None

class MetricsCollector:
    def __init__(self, storage_account: str):
        from azure.storage.blob import BlobServiceClient
        self.blob_client = BlobServiceClient.from_connection_string(
            os.environ["STORAGE_CONNECTION_STRING"]
        )
        self.container = self.blob_client.get_container_client("ai-metrics")

    def record(self, metrics: CompletionMetrics):
        blob_name = f"{metrics.timestamp.strftime('%Y/%m/%d')}/{metrics.provider}/{metrics.prompt_hash}.json"

        self.container.upload_blob(
            name=blob_name,
            data=json.dumps(metrics.__dict__, default=str),
            overwrite=True
        )

What to Expect

Based on similar Azure AI services:

Pricing

  • Likely similar to direct Anthropic pricing plus small Azure markup
  • Committed use discounts probable
  • Integration with Azure cost management

Features

  • Content filtering options (similar to Azure OpenAI)
  • Managed identity support
  • Azure Monitor integration
  • SDKs in major languages

Timeline

  • Announcement made, specific dates pending
  • Preview likely before GA
  • Gradual regional rollout expected
  1. Abstract your LLM layer: Don’t hardcode OpenAI-specific patterns
  2. Set up monitoring: Track usage and costs across providers
  3. Document requirements: Know your compliance and residency needs
  4. Test with current Claude: Use the direct API to understand capabilities
  5. Plan budget: Estimate costs for running multiple models

Conclusion

Claude on Azure will give enterprise customers more choice without leaving their trusted cloud environment. The multi-model future is here - design your systems to take advantage of it.

Start preparing now by building flexible architectures. When Azure Claude launches, you’ll be ready to integrate smoothly.

Michael John Peña

Michael John Peña

Senior Data Engineer based in Sydney. Writing about data, cloud, and technology.