5 min read
Advanced Reasoning Techniques on Azure OpenAI
Azure OpenAI continues to evolve, bringing advanced AI capabilities to enterprise environments with Azure’s security, compliance, and scale benefits. Today we explore techniques for improving AI reasoning in your applications.
Getting Started with Azure OpenAI
from openai import AzureOpenAI
import os
# Configure Azure OpenAI client
client = AzureOpenAI(
api_key=os.environ["AZURE_OPENAI_API_KEY"],
api_version="2024-06-01",
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"]
)
# GPT-4o deployment
GPT4O_DEPLOYMENT = "gpt-4o"
def call_gpt4o(prompt: str, max_tokens: int = 4096) -> dict:
"""
Call GPT-4o on Azure OpenAI
"""
response = client.chat.completions.create(
model=GPT4O_DEPLOYMENT,
messages=[{"role": "user", "content": prompt}],
max_tokens=max_tokens
)
return {
"content": response.choices[0].message.content,
"total_tokens": response.usage.total_tokens
}
Improving Reasoning with Prompting
Chain-of-Thought Technique
def solve_with_reasoning(problem: str) -> str:
"""
Use chain-of-thought prompting for better reasoning
"""
prompt = f"""
Solve the following problem step by step.
Problem: {problem}
Instructions:
1. First, understand what is being asked
2. Identify the key information and constraints
3. Plan your approach
4. Work through the solution carefully
5. Verify your answer
Show your complete reasoning process.
"""
response = client.chat.completions.create(
model=GPT4O_DEPLOYMENT,
messages=[{"role": "user", "content": prompt}],
max_tokens=4096
)
return response.choices[0].message.content
Self-Verification Pattern
def solve_and_verify(problem: str) -> dict:
"""
Solve a problem and then verify the solution
"""
# First, solve the problem
solution_response = client.chat.completions.create(
model=GPT4O_DEPLOYMENT,
messages=[{
"role": "user",
"content": f"Solve step by step: {problem}"
}],
max_tokens=4096
)
solution = solution_response.choices[0].message.content
# Then, verify the solution
verification_response = client.chat.completions.create(
model=GPT4O_DEPLOYMENT,
messages=[{
"role": "user",
"content": f"""
Problem: {problem}
Proposed solution:
{solution}
Please verify this solution:
1. Check each step for errors
2. Verify the final answer
3. Note any issues found
"""
}],
max_tokens=2048
)
return {
"solution": solution,
"verification": verification_response.choices[0].message.content,
"total_tokens": (solution_response.usage.total_tokens +
verification_response.usage.total_tokens)
}
Enterprise Patterns
Managed Identity Authentication
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
from openai import AzureOpenAI
# Use managed identity for production
token_provider = get_bearer_token_provider(
DefaultAzureCredential(),
"https://cognitiveservices.azure.com/.default"
)
client = AzureOpenAI(
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
azure_ad_token_provider=token_provider,
api_version="2024-06-01"
)
def secure_reasoning_call(prompt: str) -> str:
"""Call with managed identity authentication"""
response = client.chat.completions.create(
model=GPT4O_DEPLOYMENT,
messages=[{"role": "user", "content": prompt}],
max_tokens=4096
)
return response.choices[0].message.content
Content Filtering Integration
def call_with_content_safety(prompt: str) -> dict:
"""
Azure automatically applies content filtering
Handle filtered responses appropriately
"""
try:
response = client.chat.completions.create(
model=GPT4O_DEPLOYMENT,
messages=[{"role": "user", "content": prompt}],
max_tokens=4096
)
# Check for content filter results
finish_reason = response.choices[0].finish_reason
if finish_reason == "content_filter":
return {
"success": False,
"error": "Response filtered by content safety",
"content": None
}
return {
"success": True,
"content": response.choices[0].message.content,
"usage": response.usage.model_dump()
}
except Exception as e:
if "content_filter" in str(e).lower():
return {
"success": False,
"error": "Prompt filtered by content safety",
"content": None
}
raise
Cost Management
from typing import Optional
import time
class AzureOpenAICostTracker:
"""Track costs for Azure OpenAI usage"""
# Current GPT-4o pricing
PRICE_PER_1M_INPUT = 2.50
PRICE_PER_1M_OUTPUT = 10.00
def __init__(self, monthly_budget: float):
self.monthly_budget = monthly_budget
self.monthly_spend = 0.0
self.request_count = 0
def calculate_cost(self, input_tokens: int, output_tokens: int) -> float:
input_cost = (input_tokens / 1_000_000) * self.PRICE_PER_1M_INPUT
output_cost = (output_tokens / 1_000_000) * self.PRICE_PER_1M_OUTPUT
return input_cost + output_cost
def record_request(self, usage: dict) -> dict:
cost = self.calculate_cost(
usage["prompt_tokens"],
usage["completion_tokens"]
)
self.monthly_spend += cost
self.request_count += 1
return {
"request_cost": cost,
"monthly_spend": self.monthly_spend,
"budget_remaining": self.monthly_budget - self.monthly_spend,
"budget_percentage_used": (self.monthly_spend / self.monthly_budget) * 100
}
def can_proceed(self, estimated_cost: float) -> bool:
return (self.monthly_spend + estimated_cost) <= self.monthly_budget
# Usage
tracker = AzureOpenAICostTracker(monthly_budget=1000.0)
response = client.chat.completions.create(
model=GPT4O_DEPLOYMENT,
messages=[{"role": "user", "content": "Complex reasoning task..."}],
max_tokens=8192
)
cost_info = tracker.record_request(response.usage.model_dump())
print(f"Request cost: ${cost_info['request_cost']:.4f}")
print(f"Budget remaining: ${cost_info['budget_remaining']:.2f}")
Logging and Monitoring
import logging
from azure.monitor.opentelemetry import configure_azure_monitor
from opentelemetry import trace
# Configure Azure Monitor
configure_azure_monitor(
connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
tracer = trace.get_tracer(__name__)
logger = logging.getLogger(__name__)
def traced_reasoning_call(prompt: str, operation_name: str) -> str:
"""Call with Azure Monitor tracing"""
with tracer.start_as_current_span(operation_name) as span:
span.set_attribute("prompt_length", len(prompt))
span.set_attribute("model", GPT4O_DEPLOYMENT)
start_time = time.time()
response = client.chat.completions.create(
model=GPT4O_DEPLOYMENT,
messages=[{"role": "user", "content": prompt}],
max_tokens=8192
)
duration = time.time() - start_time
# Log metrics
span.set_attribute("duration_seconds", duration)
span.set_attribute("total_tokens", response.usage.total_tokens)
logger.info(f"GPT-4o call completed",
extra={
"operation": operation_name,
"duration": duration,
"tokens": response.usage.total_tokens
})
return response.choices[0].message.content
Compliance Considerations
Azure OpenAI provides:
- Data residency in selected regions
- SOC 2, HIPAA, ISO compliance
- Customer-managed keys option
- Private endpoints support
- Azure RBAC integration
# Private endpoint configuration example
# (Configure in Azure Portal or via ARM template)
# In code, just use the private endpoint URL
client = AzureOpenAI(
azure_endpoint="https://my-openai.privatelink.openai.azure.com/",
api_key=os.environ["AZURE_OPENAI_API_KEY"],
api_version="2024-06-01"
)
Best Practices
- Use managed identity in production environments
- Set up cost alerts in Azure Cost Management
- Enable diagnostic logging to Log Analytics
- Use private endpoints for sensitive workloads
- Implement retry logic with exponential backoff
- Monitor token usage to control costs
Looking Ahead
The AI landscape is evolving rapidly. OpenAI has hinted at improved reasoning capabilities in future models. Build your infrastructure to be flexible and ready to adopt new features as they become available on Azure.