Back to Blog
6 min read

Microsoft Fabric Certification Prep: Getting Ready for DP-600

The DP-600 certification validates your skills in implementing analytics solutions using Microsoft Fabric. Let’s explore how to prepare effectively.

DP-600 Exam Overview

from dataclasses import dataclass
from typing import List, Dict

@dataclass
class ExamDomain:
    name: str
    weight: str
    topics: List[str]

DP_600_DOMAINS = [
    ExamDomain(
        name="Plan, implement, and manage a solution for data analytics",
        weight="30-35%",
        topics=[
            "Plan a data analytics solution",
            "Implement and manage a lakehouse",
            "Implement and manage a warehouse",
            "Implement and manage real-time analytics"
        ]
    ),
    ExamDomain(
        name="Prepare and serve data",
        weight="25-30%",
        topics=[
            "Create objects in a lakehouse or warehouse",
            "Ingest and transform data",
            "Create and manage shortcuts",
            "Implement data modeling"
        ]
    ),
    ExamDomain(
        name="Implement and manage semantic models",
        weight="20-25%",
        topics=[
            "Design and build semantic models",
            "Optimize enterprise-scale semantic models",
            "Configure and manage datasets"
        ]
    ),
    ExamDomain(
        name="Explore and analyze data",
        weight="15-20%",
        topics=[
            "Perform exploratory analytics",
            "Query data by using SQL",
            "Query data by using Spark",
            "Explore and analyze data in a KQL database"
        ]
    )
]

def get_study_priorities():
    """Get prioritized study list"""
    priorities = []
    for domain in DP_600_DOMAINS:
        weight = int(domain.weight.split("-")[0])
        priorities.append({
            "domain": domain.name,
            "weight": weight,
            "priority": "high" if weight >= 25 else "medium"
        })
    return sorted(priorities, key=lambda x: x["weight"], reverse=True)

Study Guide by Domain

Domain 1: Planning and Managing Solutions

DOMAIN_1_STUDY_GUIDE = {
    "lakehouse_concepts": {
        "topics": [
            "Delta Lake fundamentals",
            "Medallion architecture (Bronze/Silver/Gold)",
            "Table partitioning",
            "Z-ordering and file optimization",
            "Delta table maintenance (VACUUM, OPTIMIZE)"
        ],
        "hands_on": [
            "Create a lakehouse",
            "Implement medallion architecture",
            "Run OPTIMIZE and VACUUM",
            "Query Delta table history"
        ]
    },
    "warehouse_concepts": {
        "topics": [
            "T-SQL in Fabric warehouse",
            "Table distributions",
            "Statistics management",
            "Workload management"
        ],
        "hands_on": [
            "Create warehouse tables",
            "Write complex T-SQL queries",
            "Manage table statistics",
            "Create and use stored procedures"
        ]
    },
    "real_time_analytics": {
        "topics": [
            "Event streams architecture",
            "KQL database design",
            "Activator triggers",
            "Real-time dashboards"
        ],
        "hands_on": [
            "Create event stream from Event Hub",
            "Write KQL queries",
            "Set up Activator alerts"
        ]
    }
}

# Sample lakehouse code to practice
lakehouse_practice = """
# Create Delta table with partitioning
from pyspark.sql import SparkSession

spark = SparkSession.builder.getOrCreate()

# Read data
df = spark.read.format("csv").option("header", True).load("Files/raw/sales.csv")

# Write as partitioned Delta table
df.write.format("delta") \\
    .partitionBy("year", "month") \\
    .mode("overwrite") \\
    .save("Tables/sales_partitioned")

# Optimize table
spark.sql("OPTIMIZE sales_partitioned ZORDER BY (customer_id)")

# View history
spark.sql("DESCRIBE HISTORY sales_partitioned").show()
"""

Domain 2: Prepare and Serve Data

DOMAIN_2_STUDY_GUIDE = {
    "data_ingestion": {
        "topics": [
            "Data pipelines vs dataflows",
            "Copy activity patterns",
            "Incremental loading",
            "Change Data Capture"
        ],
        "hands_on": [
            "Create copy pipeline",
            "Implement incremental load",
            "Use watermark columns",
            "Create dataflow transformations"
        ]
    },
    "shortcuts": {
        "topics": [
            "OneLake shortcuts",
            "External data sources",
            "Shortcut security",
            "Performance considerations"
        ],
        "hands_on": [
            "Create ADLS shortcut",
            "Create S3 shortcut",
            "Query data via shortcuts"
        ]
    },
    "data_modeling": {
        "topics": [
            "Star schema design",
            "Dimension types (SCD)",
            "Fact table patterns",
            "Data vault concepts"
        ],
        "hands_on": [
            "Design star schema",
            "Implement SCD Type 2",
            "Create fact/dimension tables"
        ]
    }
}

# Sample pipeline pattern
pipeline_pattern = """
// Incremental load with watermark
{
    "name": "IncrementalLoad",
    "activities": [
        {
            "name": "LookupLastWatermark",
            "type": "Lookup",
            "dataset": "WatermarkTable"
        },
        {
            "name": "CopyNewData",
            "type": "Copy",
            "source": {
                "query": "SELECT * FROM source WHERE modified > @lastWatermark"
            },
            "dependsOn": ["LookupLastWatermark"]
        },
        {
            "name": "UpdateWatermark",
            "type": "StoredProcedure",
            "dependsOn": ["CopyNewData"]
        }
    ]
}
"""

Domain 3: Semantic Models

DOMAIN_3_STUDY_GUIDE = {
    "model_design": {
        "topics": [
            "Direct Lake vs Import mode",
            "Relationships and cardinality",
            "Role-playing dimensions",
            "DAX measures"
        ],
        "hands_on": [
            "Create semantic model",
            "Define relationships",
            "Write DAX measures",
            "Configure incremental refresh"
        ]
    },
    "optimization": {
        "topics": [
            "Large-scale model design",
            "Aggregations",
            "Partitioning strategies",
            "Memory optimization"
        ],
        "hands_on": [
            "Implement aggregations",
            "Configure partitions",
            "Analyze model memory usage"
        ]
    }
}

# Sample DAX measures
dax_measures = """
-- Year over Year Growth
YoY Growth % =
VAR CurrentYear = SUM(Sales[Amount])
VAR PreviousYear = CALCULATE(
    SUM(Sales[Amount]),
    SAMEPERIODLASTYEAR('Date'[Date])
)
RETURN
    DIVIDE(CurrentYear - PreviousYear, PreviousYear)

-- Running Total
Running Total =
CALCULATE(
    SUM(Sales[Amount]),
    FILTER(
        ALL('Date'[Date]),
        'Date'[Date] <= MAX('Date'[Date])
    )
)
"""

Domain 4: Explore and Analyze

DOMAIN_4_STUDY_GUIDE = {
    "sql_queries": {
        "topics": [
            "Warehouse T-SQL",
            "Window functions",
            "CTEs and subqueries",
            "Performance optimization"
        ],
        "sample_queries": [
            "Ranking and row numbering",
            "Moving averages",
            "Pivot and unpivot",
            "Recursive queries"
        ]
    },
    "spark_analysis": {
        "topics": [
            "PySpark DataFrame API",
            "Spark SQL",
            "Data visualization",
            "Machine learning basics"
        ],
        "hands_on": [
            "Exploratory data analysis",
            "Data profiling",
            "Statistical analysis"
        ]
    },
    "kql_queries": {
        "topics": [
            "KQL syntax basics",
            "Time series analysis",
            "Aggregations",
            "Visualizations"
        ],
        "sample_queries": [
            "where, project, summarize",
            "make-series for time series",
            "render for visualizations"
        ]
    }
}

# Sample KQL for exam
kql_samples = """
// Basic filtering and aggregation
Events
| where Timestamp > ago(7d)
| summarize count() by bin(Timestamp, 1h), EventType
| order by Timestamp desc

// Time series analysis
Events
| make-series Count=count() on Timestamp step 1h
| extend anomalies = series_decompose_anomalies(Count)
| mv-expand Timestamp, Count, anomalies

// Percentiles
Events
| summarize percentiles(Duration, 50, 95, 99) by EventType
"""

Practice Resources

STUDY_RESOURCES = {
    "official": [
        "Microsoft Learn DP-600 Learning Path",
        "Microsoft Fabric Documentation",
        "Microsoft Fabric Blog",
        "Fabric Community"
    ],
    "hands_on": [
        "Fabric trial capacity",
        "Microsoft Learn sandboxes",
        "Sample datasets (AdventureWorks, Wide World Importers)"
    ],
    "practice_exams": [
        "Microsoft Official Practice Test",
        "MeasureUp practice exams"
    ],
    "community": [
        "Fabric Community forums",
        "YouTube tutorials",
        "LinkedIn Learning courses"
    ]
}

def create_study_plan(weeks: int = 8) -> List[Dict]:
    """Create an 8-week study plan"""
    return [
        {"week": 1, "focus": "Fabric Overview", "domains": ["Platform basics"]},
        {"week": 2, "focus": "Lakehouse Deep Dive", "domains": ["Domain 1"]},
        {"week": 3, "focus": "Warehouse and SQL", "domains": ["Domain 1, 4"]},
        {"week": 4, "focus": "Data Pipelines", "domains": ["Domain 2"]},
        {"week": 5, "focus": "Semantic Models", "domains": ["Domain 3"]},
        {"week": 6, "focus": "Real-Time Analytics", "domains": ["Domain 1, 4"]},
        {"week": 7, "focus": "Practice Exams", "domains": ["All"]},
        {"week": 8, "focus": "Review and Final Prep", "domains": ["Weak areas"]}
    ]

Exam Tips

EXAM_TIPS = {
    "before_exam": [
        "Get hands-on experience with Fabric trial",
        "Complete all Microsoft Learn modules",
        "Practice with sample questions",
        "Review weak areas identified in practice tests"
    ],
    "during_exam": [
        "Read questions carefully - look for keywords",
        "Flag difficult questions and return later",
        "Manage time (about 2 minutes per question)",
        "Don't second-guess yourself"
    ],
    "key_concepts": [
        "Understand when to use Lakehouse vs Warehouse",
        "Know Delta Lake operations (OPTIMIZE, VACUUM, etc.)",
        "Be comfortable with both T-SQL and PySpark",
        "Understand semantic model design patterns",
        "Know KQL basics for real-time scenarios"
    ]
}

The DP-600 certification demonstrates your expertise in Microsoft Fabric. Focus on hands-on practice and understanding the “why” behind each feature, not just the “how.”

Michael John Peña

Michael John Peña

Senior Data Engineer based in Sydney. Writing about data, cloud, and technology.