Back to Blog
5 min read

GPT-5 Speculation: What Enterprise AI Teams Should Prepare For

With Microsoft Ignite 2024 approaching, speculation about GPT-5 is intensifying. While nothing is confirmed, let’s analyze what we know and how enterprise teams should prepare for the next generation of foundation models.

What We Know (and Don’t Know)

Confirmed patterns from OpenAI:

  • Each generation brings ~10x capability improvement
  • Multimodal capabilities are expanding
  • Reasoning improvements (o1 series) may merge into GPT-5
  • Focus on reliability and reduced hallucinations

What we don’t know:

  • Release timeline (2024? 2025?)
  • Pricing structure
  • Azure availability timing
  • Specific capability improvements

Preparing Your Architecture for GPT-5

Build systems that can adapt to model upgrades:

from abc import ABC, abstractmethod
from typing import Dict, Any, List
import json

class LLMProvider(ABC):
    """Abstract base for LLM providers - enables easy model swapping."""

    @abstractmethod
    async def complete(self, messages: List[Dict], **kwargs) -> str:
        pass

    @abstractmethod
    async def embed(self, text: str) -> List[float]:
        pass

class AzureOpenAIProvider(LLMProvider):
    """Azure OpenAI implementation with model versioning."""

    MODEL_CONFIGS = {
        "gpt-4o": {
            "deployment": "gpt-4o-deployment",
            "max_tokens": 128000,
            "supports_vision": True
        },
        "gpt-4o-mini": {
            "deployment": "gpt-4o-mini-deployment",
            "max_tokens": 128000,
            "supports_vision": True
        },
        # Future-proofing for GPT-5
        "gpt-5": {
            "deployment": "gpt-5-deployment",
            "max_tokens": 256000,  # Speculation
            "supports_vision": True,
            "supports_reasoning": True  # Speculation
        }
    }

    def __init__(self, model: str = "gpt-4o"):
        self.model = model
        self.config = self.MODEL_CONFIGS.get(model, self.MODEL_CONFIGS["gpt-4o"])
        self.client = AzureOpenAI(...)

    async def complete(self, messages: List[Dict], **kwargs) -> str:
        response = await self.client.chat.completions.create(
            model=self.config["deployment"],
            messages=messages,
            **kwargs
        )
        return response.choices[0].message.content

class ModelRouter:
    """Route requests to appropriate models based on complexity."""

    def __init__(self):
        self.providers = {
            "simple": AzureOpenAIProvider("gpt-4o-mini"),
            "standard": AzureOpenAIProvider("gpt-4o"),
            "complex": AzureOpenAIProvider("gpt-4o"),  # Will be gpt-5
        }

    def classify_complexity(self, prompt: str) -> str:
        """Classify prompt complexity for routing."""
        # Simple heuristics - can be replaced with classifier
        if len(prompt) < 100 and "?" in prompt:
            return "simple"
        elif any(word in prompt.lower() for word in ["analyze", "design", "compare"]):
            return "complex"
        return "standard"

    async def route(self, messages: List[Dict]) -> str:
        complexity = self.classify_complexity(messages[-1]["content"])
        provider = self.providers[complexity]
        return await provider.complete(messages)

Building Model-Agnostic Evaluation

Create evaluation frameworks that work across model generations:

from dataclasses import dataclass
from typing import List, Callable
import asyncio

@dataclass
class TestCase:
    input_messages: List[Dict]
    expected_contains: List[str]
    expected_not_contains: List[str] = None
    max_tokens: int = 1000

@dataclass
class EvalResult:
    test_case: TestCase
    model: str
    response: str
    passed: bool
    latency_ms: float
    tokens_used: int

class ModelEvaluator:
    """Evaluate models against test suites for comparison."""

    def __init__(self, providers: Dict[str, LLMProvider]):
        self.providers = providers

    async def evaluate_test_case(
        self,
        provider: LLMProvider,
        model_name: str,
        test_case: TestCase
    ) -> EvalResult:
        import time

        start = time.time()
        response = await provider.complete(
            test_case.input_messages,
            max_tokens=test_case.max_tokens
        )
        latency_ms = (time.time() - start) * 1000

        # Check pass conditions
        passed = all(
            expected.lower() in response.lower()
            for expected in test_case.expected_contains
        )

        if test_case.expected_not_contains:
            passed = passed and not any(
                forbidden.lower() in response.lower()
                for forbidden in test_case.expected_not_contains
            )

        return EvalResult(
            test_case=test_case,
            model=model_name,
            response=response,
            passed=passed,
            latency_ms=latency_ms,
            tokens_used=len(response.split()) * 1.3  # Rough estimate
        )

    async def compare_models(self, test_cases: List[TestCase]) -> Dict:
        """Run test suite across all providers."""
        results = {}

        for model_name, provider in self.providers.items():
            model_results = []
            for test_case in test_cases:
                result = await self.evaluate_test_case(
                    provider, model_name, test_case
                )
                model_results.append(result)

            results[model_name] = {
                "pass_rate": sum(r.passed for r in model_results) / len(model_results),
                "avg_latency_ms": sum(r.latency_ms for r in model_results) / len(model_results),
                "total_tokens": sum(r.tokens_used for r in model_results),
                "details": model_results
            }

        return results

# Usage
test_cases = [
    TestCase(
        input_messages=[
            {"role": "user", "content": "What is Microsoft Fabric?"}
        ],
        expected_contains=["analytics", "data", "unified"],
    ),
    TestCase(
        input_messages=[
            {"role": "user", "content": "Write a SQL query to find duplicate rows"}
        ],
        expected_contains=["SELECT", "GROUP BY", "HAVING"],
    ),
]

evaluator = ModelEvaluator({
    "gpt-4o-mini": AzureOpenAIProvider("gpt-4o-mini"),
    "gpt-4o": AzureOpenAIProvider("gpt-4o"),
})

results = await evaluator.compare_models(test_cases)

Expected GPT-5 Capabilities (Speculation)

Based on trends and research directions:

1. Improved Reasoning

# Current approach with o1
response = client.chat.completions.create(
    model="o1-preview",
    messages=[...],
    max_completion_tokens=4000
)

# GPT-5 might unify this
response = client.chat.completions.create(
    model="gpt-5",
    messages=[...],
    reasoning_mode="extended",  # Speculative
    max_tokens=4000
)

2. Larger Context Windows

# Current: 128K tokens
# GPT-5 speculation: 256K-1M tokens

# This enables new use cases
entire_codebase = load_all_source_files()  # 500K tokens
response = client.chat.completions.create(
    model="gpt-5",
    messages=[
        {"role": "system", "content": "Analyze this codebase for security issues."},
        {"role": "user", "content": entire_codebase}
    ]
)

3. Native Tool Use

# Current: Manual tool calling
# GPT-5: Native integration speculation

response = client.chat.completions.create(
    model="gpt-5",
    messages=[...],
    tools=[
        {
            "type": "code_execution",
            "sandbox": "python"
        },
        {
            "type": "web_search",
            "provider": "bing"
        }
    ],
    tool_execution="automatic"  # Model decides and executes
)

Budget Planning for GPT-5

Plan for cost implications:

def estimate_gpt5_costs(current_usage: Dict) -> Dict:
    """Estimate GPT-5 costs based on historical patterns."""

    # Historical pricing patterns (per 1M tokens)
    pricing_history = {
        "gpt-4-turbo-2024": {"input": 10.00, "output": 30.00},
        "gpt-4o-2024": {"input": 2.50, "output": 10.00},
        "gpt-4o-mini": {"input": 0.15, "output": 0.60},
    }

    # GPT-5 scenarios
    scenarios = {
        "optimistic": {"input": 3.00, "output": 12.00},  # Similar to 4o
        "realistic": {"input": 5.00, "output": 20.00},   # Premium for new capabilities
        "conservative": {"input": 10.00, "output": 40.00}  # Early adopter pricing
    }

    current_monthly = current_usage["monthly_tokens"]
    input_ratio = 0.7  # Typical input/output ratio

    estimates = {}
    for scenario, prices in scenarios.items():
        monthly_cost = (
            (current_monthly * input_ratio * prices["input"] / 1_000_000) +
            (current_monthly * (1 - input_ratio) * prices["output"] / 1_000_000)
        )
        estimates[scenario] = monthly_cost

    return estimates

# Example
current = {"monthly_tokens": 50_000_000}  # 50M tokens/month
estimates = estimate_gpt5_costs(current)
print(f"Optimistic: ${estimates['optimistic']:,.2f}/month")
print(f"Realistic: ${estimates['realistic']:,.2f}/month")
print(f"Conservative: ${estimates['conservative']:,.2f}/month")

Action Items for Enterprise Teams

  1. Abstract your LLM integrations - Don’t hard-code model names
  2. Build evaluation pipelines - Automate model comparison
  3. Track your usage patterns - Understand your token distribution
  4. Budget for experimentation - New models need testing time
  5. Document model-specific behaviors - Some prompts may need updates

The best preparation is building flexible systems that can quickly adopt new models while maintaining production stability.

Resources

Michael John Peña

Michael John Peña

Senior Data Engineer based in Sydney. Writing about data, cloud, and technology.