6 min read
Microsoft Copilot Updates: What's New for Enterprise Users
Microsoft Copilot continues to evolve rapidly across the Microsoft ecosystem. Let’s explore the latest updates and how they impact enterprise users.
Copilot Ecosystem Overview
┌─────────────────────────────────────────────────────────────┐
│ Microsoft Copilot │
├─────────────────┬─────────────────┬─────────────────────────┤
│ Copilot for M365│ Copilot Studio │ GitHub Copilot │
├─────────────────┼─────────────────┼─────────────────────────┤
│ - Word │ - Custom agents │ - Code completion │
│ - Excel │ - Connectors │ - Chat │
│ - PowerPoint │ - Actions │ - PR reviews │
│ - Outlook │ - Workflows │ - Documentation │
│ - Teams │ │ │
└─────────────────┴─────────────────┴─────────────────────────┘
Copilot for Microsoft 365 Updates
Excel Copilot Enhancements
# Excel Copilot can now handle complex data analysis
# Example: Natural language to Python in Excel
# User prompt: "Analyze sales trends and forecast next quarter"
# Copilot generates:
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
from datetime import timedelta
# Read data from Excel range
df = xl("Sales[#All]", headers=True)
# Prepare time series data
df['Date'] = pd.to_datetime(df['Date'])
df['DayNumber'] = (df['Date'] - df['Date'].min()).dt.days
# Train simple forecast model
X = df[['DayNumber']].values
y = df['Revenue'].values
model = LinearRegression()
model.fit(X, y)
# Forecast next 90 days
last_day = df['DayNumber'].max()
future_days = np.array([[last_day + i] for i in range(1, 91)])
forecast = model.predict(future_days)
# Create forecast dataframe
forecast_dates = pd.date_range(
start=df['Date'].max() + timedelta(days=1),
periods=90
)
result = pd.DataFrame({
'Date': forecast_dates,
'Forecast': forecast
})
# Return to Excel
result
PowerPoint Copilot for Data Stories
# New capability: Create presentations from data
User: "Create a presentation about our Q3 sales performance
using data from the Sales lakehouse"
Copilot:
1. Connects to Microsoft Fabric
2. Queries sales data
3. Generates insights
4. Creates slides with:
- Executive summary
- Key metrics visualization
- Regional breakdown
- Trend analysis
- Recommendations
Teams Copilot Intelligent Recap
# Teams meeting intelligence API
from msgraph import GraphServiceClient
async def get_meeting_insights(meeting_id: str):
"""Get AI-generated meeting insights."""
client = GraphServiceClient(credentials)
# Get transcript
transcript = await client.communications.calls[meeting_id].transcript.get()
# Get AI insights
insights = await client.communications.calls[meeting_id].insights.get()
return {
"summary": insights.summary,
"action_items": insights.action_items,
"decisions": insights.decisions,
"topics": insights.topics,
"sentiment": insights.sentiment_analysis,
"follow_ups": insights.suggested_follow_ups
}
# Example output
{
"summary": "Discussed Q4 planning and budget allocation...",
"action_items": [
{"owner": "John", "task": "Prepare budget proposal", "due": "Nov 20"},
{"owner": "Sarah", "task": "Review vendor contracts", "due": "Nov 18"}
],
"decisions": [
"Approved 15% increase for cloud infrastructure",
"Delayed new hire until Q1"
],
"topics": ["Budget", "Hiring", "Infrastructure"],
"sentiment": {"overall": "positive", "concerns": ["timeline"]}
}
Copilot Studio Updates
Custom Copilot Creation
# copilot-config.yaml
name: FabricDataAssistant
description: Help users with Microsoft Fabric data tasks
model:
provider: azure_openai
deployment: gpt-4o
knowledge_sources:
- type: sharepoint
site: "https://contoso.sharepoint.com/sites/DataTeam"
folders: ["Documentation", "Best Practices"]
- type: fabric_lakehouse
workspace: "DataPlatform"
lakehouse: "Analytics"
- type: website
url: "https://learn.microsoft.com/fabric"
actions:
- name: query_fabric
description: Execute queries against Fabric
connector: fabric_connector
requires_approval: false
- name: create_report
description: Create a Power BI report
connector: powerbi_connector
requires_approval: true
conversation:
greeting: "Hi! I'm your Fabric Data Assistant. I can help you query data, create reports, and answer questions about our data platform."
fallback: "I'm not sure about that. Would you like me to search our documentation or connect you with the data team?"
security:
authentication: azure_ad
allowed_groups: ["Data Users", "Analysts"]
Copilot Actions
# Copilot Studio actions are defined using Power Platform connectors and flows
# For Fabric integration, use the Fabric REST API via custom connectors
# Example: Power Automate flow action for Fabric queries
# This would be configured in Power Automate and called from Copilot Studio
from azure.identity import DefaultAzureCredential
import requests
def fabric_query_action(query: str, lakehouse: str, max_rows: int = 100):
"""Execute queries against Microsoft Fabric Lakehouse via REST API."""
credential = DefaultAzureCredential()
token = credential.get_token("https://api.fabric.microsoft.com/.default").token
headers = {
"Authorization": f"Bearer {token}",
"Content-Type": "application/json"
}
workspace_id = "your-workspace-id"
lakehouse_id = "your-lakehouse-id"
# Use SQL endpoint for queries
sql_endpoint = f"https://<workspace>.datawarehouse.fabric.microsoft.com"
# Execute query via SQL endpoint
safe_query = f"SELECT TOP {max_rows} * FROM ({query}) AS subquery"
# Note: For production, use the Fabric SQL Connection String
# with pyodbc or another SQL driver
return {
"query": safe_query,
"lakehouse": lakehouse,
"max_rows": max_rows
}
# In Copilot Studio:
# 1. Create a custom connector pointing to your Fabric API wrapper
# 2. Define the action with input parameters (query, lakehouse, max_rows)
# 3. Configure authentication using Azure AD
# 4. Use the action in your copilot topics
Copilot Connectors
# Custom connector definition for Copilot Studio (OpenAPI format)
# Save as fabric-connector.yaml and import into Power Platform
swagger: "2.0"
info:
title: Microsoft Fabric Connector
description: Connect to Microsoft Fabric workspaces
version: "1.0"
host: api.fabric.microsoft.com
basePath: /v1
schemes:
- https
securityDefinitions:
oauth2_auth:
type: oauth2
flow: accessCode
authorizationUrl: https://login.microsoftonline.com/common/oauth2/authorize
tokenUrl: https://login.microsoftonline.com/common/oauth2/token
scopes:
https://api.fabric.microsoft.com/.default: Access Fabric API
paths:
/workspaces:
get:
summary: List workspaces
operationId: ListWorkspaces
responses:
200:
description: Success
schema:
type: object
properties:
value:
type: array
items:
type: object
/workspaces/{workspaceId}/items:
get:
summary: List items in workspace
operationId: ListItems
parameters:
- name: workspaceId
in: path
required: true
type: string
responses:
200:
description: Success
# In Copilot Studio:
# 1. Go to Connectors > Custom connectors
# 2. Import this OpenAPI definition
# 3. Configure OAuth2 authentication with Azure AD
# 4. Test the connector
# 5. Use in your copilot actions
Integration with Fabric
# Fabric Copilot integration example
class FabricCopilotIntegration:
"""Integrate Copilot with Microsoft Fabric."""
async def natural_language_query(self, question: str) -> dict:
"""Convert natural language to Fabric query."""
# Get schema context
schema = await self.get_lakehouse_schema()
# Generate SQL using Copilot
prompt = f"""Based on this schema:
{schema}
Convert this question to SQL:
{question}
Return only the SQL query."""
response = await self.copilot.generate(prompt)
sql = response.content
# Execute and return results
results = await self.execute_query(sql)
return {
"question": question,
"sql": sql,
"results": results,
"explanation": await self.explain_results(question, results)
}
async def create_report_from_description(self, description: str) -> str:
"""Create Power BI report from natural language description."""
# Parse description
report_spec = await self.copilot.parse_report_description(description)
# Generate DAX measures
measures = await self.generate_dax_measures(report_spec)
# Create report
report = await self.powerbi.create_report(
name=report_spec.name,
dataset=report_spec.dataset,
pages=report_spec.pages,
measures=measures
)
return report.url
Microsoft Copilot is becoming the unified AI interface across the Microsoft ecosystem. Understanding these capabilities helps you leverage AI assistants effectively in your enterprise workflows.