Back to Blog
5 min read

AI Cost Trends: The Economics of Enterprise AI in 2024

AI costs have transformed dramatically in 2024. Let’s analyze the trends and what they mean for enterprise AI economics.

Cost Evolution Timeline

GPT-4 Class Model Pricing (per 1M tokens):

January 2023: GPT-4
├── Input: $30.00
└── Output: $60.00

March 2024: GPT-4 Turbo
├── Input: $10.00
└── Output: $30.00

May 2024: GPT-4o
├── Input: $5.00
└── Output: $15.00

August 2024: GPT-4o (updated)
├── Input: $2.50
└── Output: $10.00

November 2024: GPT-4o-mini
├── Input: $0.15
└── Output: $0.60

Reduction: 99.5% cost reduction in under 2 years

Cost Analysis by Use Case

def calculate_monthly_ai_cost(use_case: dict) -> dict:
    """Calculate AI costs for different use cases."""

    pricing = {
        "gpt-4o": {"input": 2.50, "output": 10.00},
        "gpt-4o-mini": {"input": 0.15, "output": 0.60},
        "text-embedding-3-large": {"input": 0.13},
        "text-embedding-3-small": {"input": 0.02}
    }

    use_cases = {
        "customer_service_chatbot": {
            "model": "gpt-4o-mini",
            "monthly_conversations": 50000,
            "avg_input_tokens": 500,
            "avg_output_tokens": 200,
            "calculation": lambda p, c: (
                (c["monthly_conversations"] * c["avg_input_tokens"] / 1_000_000 * p["input"]) +
                (c["monthly_conversations"] * c["avg_output_tokens"] / 1_000_000 * p["output"])
            )
        },
        "document_processing": {
            "model": "gpt-4o",
            "monthly_documents": 10000,
            "avg_input_tokens": 2000,
            "avg_output_tokens": 500,
            "calculation": lambda p, c: (
                (c["monthly_documents"] * c["avg_input_tokens"] / 1_000_000 * p["input"]) +
                (c["monthly_documents"] * c["avg_output_tokens"] / 1_000_000 * p["output"])
            )
        },
        "rag_knowledge_base": {
            "model": "gpt-4o-mini",
            "embedding_model": "text-embedding-3-small",
            "monthly_queries": 100000,
            "avg_query_tokens": 100,
            "avg_context_tokens": 1500,
            "avg_output_tokens": 300,
            "monthly_embedding_tokens": 10_000_000,  # Indexing
            "calculation": "complex"
        }
    }

    return use_cases

# Example monthly costs (December 2024):
monthly_costs = {
    "customer_service_chatbot": {
        "volume": "50K conversations",
        "cost": "$12.00",  # Down from $900 in Jan 2023
        "cost_per_conversation": "$0.00024"
    },
    "document_processing": {
        "volume": "10K documents",
        "cost": "$100.00",  # Down from $2,700 in Jan 2023
        "cost_per_document": "$0.01"
    },
    "rag_knowledge_base": {
        "volume": "100K queries",
        "cost": "$55.00",  # Including embeddings
        "cost_per_query": "$0.00055"
    }
}

Total Cost of Ownership

class AITotalCostModel:
    """Calculate true total cost of AI deployment."""

    def calculate_tco(self, deployment: dict) -> dict:
        # Direct costs
        inference_cost = self.calculate_inference_cost(deployment)
        embedding_cost = self.calculate_embedding_cost(deployment)

        # Infrastructure costs
        compute_cost = deployment.get("additional_compute", 0)
        storage_cost = deployment.get("vector_storage_gb", 0) * 0.10  # Per GB
        network_cost = deployment.get("data_transfer_gb", 0) * 0.05

        # Operational costs
        monitoring_cost = inference_cost * 0.10  # ~10% of inference
        logging_cost = deployment.get("log_retention_gb", 10) * 0.03

        # Hidden costs often missed
        hidden_costs = {
            "failed_requests_retry": inference_cost * 0.05,
            "evaluation_testing": inference_cost * 0.10,
            "prompt_iteration": inference_cost * 0.15,  # During development
            "overhead_tokens": inference_cost * 0.08  # System prompts, etc.
        }

        # People costs (often largest!)
        people_cost = {
            "ai_engineer": 15000,  # Monthly, fractional allocation
            "mlops": 10000,
            "product_manager": 5000,
            "data_preparation": 8000
        }

        return {
            "direct_ai_cost": inference_cost + embedding_cost,
            "infrastructure_cost": compute_cost + storage_cost + network_cost,
            "operational_cost": monitoring_cost + logging_cost,
            "hidden_costs": sum(hidden_costs.values()),
            "people_cost": sum(people_cost.values()),
            "total_monthly": sum([
                inference_cost,
                embedding_cost,
                compute_cost,
                storage_cost,
                network_cost,
                monitoring_cost,
                logging_cost,
                sum(hidden_costs.values()),
                sum(people_cost.values())
            ]),
            "ai_cost_percentage": (inference_cost + embedding_cost) / self.total * 100
        }

# Typical finding:
# Direct AI API costs: 15-25% of total
# Infrastructure: 10-15%
# Operations: 5-10%
# People: 50-70%

Cost Optimization Strategies

Strategy 1: Model Tiering

model_tiering_strategy = {
    "tier_1_simple": {
        "model": "gpt-4o-mini",
        "use_cases": [
            "Simple Q&A",
            "Classification",
            "Basic extraction"
        ],
        "cost": "$0.15-0.60/1M tokens",
        "target_percentage": "60% of requests"
    },

    "tier_2_standard": {
        "model": "gpt-4o",
        "use_cases": [
            "Complex reasoning",
            "Multi-step tasks",
            "Quality-critical responses"
        ],
        "cost": "$2.50-10/1M tokens",
        "target_percentage": "35% of requests"
    },

    "tier_3_premium": {
        "model": "o1-preview",
        "use_cases": [
            "Complex analysis",
            "Code generation",
            "Scientific reasoning"
        ],
        "cost": "$15-60/1M tokens",
        "target_percentage": "5% of requests"
    }
}

# Result: 60-70% cost reduction vs using GPT-4o for everything

Strategy 2: Caching Layers

caching_roi = {
    "exact_cache": {
        "implementation_cost": "$500 (Redis setup)",
        "hit_rate": "15-25%",
        "monthly_savings": "15-25% of inference cost"
    },

    "semantic_cache": {
        "implementation_cost": "$2000 (Vector DB + embeddings)",
        "hit_rate": "30-50% additional",
        "monthly_savings": "30-50% additional"
    },

    "response_cache_by_intent": {
        "implementation_cost": "$1000",
        "hit_rate": "10-20% additional",
        "monthly_savings": "10-20% additional"
    },

    "total_potential_savings": "50-80% of inference costs"
}

Strategy 3: Batch Processing

batch_vs_realtime = {
    "realtime": {
        "cost_per_1m_tokens": 2.50,
        "latency": "500ms-2s",
        "use_for": "Interactive, user-facing"
    },

    "batch_api": {
        "cost_per_1m_tokens": 1.25,  # 50% discount
        "latency": "Up to 24 hours",
        "use_for": "Background processing, analytics",
        "savings": "50%"
    }
}

# Identify batch-eligible workloads:
batch_candidates = [
    "Nightly document processing",
    "Batch embeddings for new content",
    "Weekly report generation",
    "Content moderation backlog",
    "Training data generation"
]

Cost Projection for 2025

cost_predictions_2025 = {
    "frontier_models": {
        "current_cost": "$2.50/1M input",
        "predicted_2025": "$0.50-1.00/1M input",
        "reduction": "60-80%",
        "reason": "Competition + efficiency improvements"
    },

    "efficient_models": {
        "current_cost": "$0.15/1M input",
        "predicted_2025": "$0.03-0.05/1M input",
        "reduction": "70-80%",
        "reason": "Better architectures, commoditization"
    },

    "embeddings": {
        "current_cost": "$0.02/1M tokens",
        "predicted_2025": "$0.005/1M tokens",
        "reduction": "75%",
        "reason": "Widespread availability"
    },

    "custom_models": {
        "fine_tuning_cost": "Decreasing 50% annually",
        "hosting_cost": "Serverless becoming standard",
        "barrier": "Lower every quarter"
    }
}

Budget Planning Template

def create_ai_budget(
    monthly_requests: int,
    avg_tokens_per_request: int,
    model_tier_distribution: dict,
    cache_hit_rate: float = 0.4
) -> dict:
    """Create annual AI budget."""

    # Calculate effective requests after caching
    effective_requests = monthly_requests * (1 - cache_hit_rate)

    # Calculate by tier
    tier_costs = {}
    for tier, percentage in model_tier_distribution.items():
        tier_requests = effective_requests * percentage
        tier_tokens = tier_requests * avg_tokens_per_request
        tier_costs[tier] = calculate_tier_cost(tier, tier_tokens)

    monthly_inference = sum(tier_costs.values())

    return {
        "monthly_inference": monthly_inference,
        "monthly_infrastructure": monthly_inference * 0.20,
        "monthly_operations": monthly_inference * 0.15,
        "monthly_contingency": monthly_inference * 0.25,  # For growth
        "monthly_total": monthly_inference * 1.60,
        "annual_total": monthly_inference * 1.60 * 12,
        "cost_per_request": monthly_inference / monthly_requests
    }

# Example:
budget = create_ai_budget(
    monthly_requests=100000,
    avg_tokens_per_request=1000,
    model_tier_distribution={"simple": 0.6, "standard": 0.35, "premium": 0.05},
    cache_hit_rate=0.4
)
# Result: ~$500/month total for 100K requests

AI costs are on a consistent downward trajectory. Plan for continuous cost reduction and reinvest savings into more sophisticated use cases.

Resources

Michael John Peña

Michael John Peña

Senior Data Engineer based in Sydney. Writing about data, cloud, and technology.