Back to Blog
6 min read

AI Governance Frameworks: Building Responsible AI at Scale

Effective AI governance enables innovation while managing risk. Let’s explore practical frameworks for enterprise AI governance.

Governance Framework Overview

AI Governance Pillars:

Strategy & Oversight
├── AI Strategy alignment
├── Executive sponsorship
└── Governance committee

Policies & Standards
├── Acceptable use policy
├── Development standards
└── Vendor requirements

Processes & Controls
├── Risk assessment
├── Approval workflows
└── Monitoring

Technology & Tools
├── Governance platform
├── Audit logging
└── Compliance automation

Implementing AI Governance

Governance Structure

from dataclasses import dataclass
from typing import List
from enum import Enum

class ApprovalLevel(Enum):
    AUTO = "auto"
    TEAM_LEAD = "team_lead"
    GOVERNANCE_COMMITTEE = "governance_committee"
    EXECUTIVE = "executive"

@dataclass
class AIGovernanceStructure:
    """Define AI governance organizational structure."""

    roles = {
        "ai_governance_committee": {
            "composition": [
                "Chief Data Officer (Chair)",
                "Chief Technology Officer",
                "Chief Risk Officer",
                "Legal/Compliance Lead",
                "Business Unit Representatives",
                "Data Privacy Officer"
            ],
            "responsibilities": [
                "Set AI strategy and policies",
                "Approve high-risk AI projects",
                "Review AI incidents",
                "Oversee compliance"
            ],
            "meeting_frequency": "Monthly"
        },

        "ai_platform_team": {
            "composition": [
                "AI Platform Lead",
                "ML Engineers",
                "MLOps Engineers",
                "Security Engineers"
            ],
            "responsibilities": [
                "Maintain AI platform",
                "Implement guardrails",
                "Support AI projects",
                "Monitor AI systems"
            ]
        },

        "ai_ethics_board": {
            "composition": [
                "External ethics advisor",
                "Internal ethics lead",
                "Diverse stakeholder representatives"
            ],
            "responsibilities": [
                "Ethical review of AI use cases",
                "Bias assessment",
                "Societal impact evaluation"
            ]
        }
    }

    def get_approval_level(self, project: dict) -> ApprovalLevel:
        """Determine required approval level."""
        risk_score = project.get("risk_score", 0)
        business_impact = project.get("business_impact", "low")

        if risk_score > 80 or business_impact == "critical":
            return ApprovalLevel.EXECUTIVE

        if risk_score > 50 or business_impact == "high":
            return ApprovalLevel.GOVERNANCE_COMMITTEE

        if risk_score > 20 or business_impact == "medium":
            return ApprovalLevel.TEAM_LEAD

        return ApprovalLevel.AUTO

AI Policy Framework

class AIPolicyFramework:
    """Define and enforce AI policies."""

    policies = {
        "acceptable_use": {
            "allowed": [
                "Augmenting human decision-making",
                "Automating repetitive tasks",
                "Improving customer experience",
                "Data analysis and insights"
            ],
            "prohibited": [
                "Autonomous decisions affecting employment",
                "Social scoring of customers",
                "Surveillance without consent",
                "Generating misleading content"
            ],
            "requires_approval": [
                "Customer-facing AI",
                "Decision automation",
                "Processing sensitive data",
                "Using biometric data"
            ]
        },

        "data_use": {
            "allowed_data_types": [
                "Aggregated analytics",
                "Anonymized datasets",
                "Consented personal data"
            ],
            "prohibited_data_types": [
                "Data without proper consent",
                "Illegally obtained data",
                "Children's data (without guardian consent)"
            ],
            "requirements": [
                "Data provenance documentation",
                "Privacy impact assessment",
                "Data retention limits"
            ]
        },

        "model_development": {
            "requirements": [
                "Documented training process",
                "Bias evaluation",
                "Performance benchmarks",
                "Security review"
            ],
            "approval_gates": [
                "Design review",
                "Data review",
                "Model review",
                "Deployment review"
            ]
        },

        "vendor_ai": {
            "requirements": [
                "Vendor AI assessment",
                "Data processing agreement",
                "Security certification",
                "Audit rights"
            ],
            "prohibited_vendors": [
                "Vendors without security certification",
                "Vendors in restricted jurisdictions"
            ]
        }
    }

    def check_compliance(self, project: dict) -> dict:
        """Check project against policies."""
        violations = []
        warnings = []

        # Check acceptable use
        for prohibited in self.policies["acceptable_use"]["prohibited"]:
            if prohibited.lower() in project.get("purpose", "").lower():
                violations.append(f"Prohibited use case: {prohibited}")

        # Check data use
        for data_type in project.get("data_types", []):
            if data_type in self.policies["data_use"]["prohibited_data_types"]:
                violations.append(f"Prohibited data type: {data_type}")

        # Check if approval needed
        for approval_case in self.policies["acceptable_use"]["requires_approval"]:
            if approval_case.lower() in project.get("description", "").lower():
                warnings.append(f"Requires approval: {approval_case}")

        return {
            "compliant": len(violations) == 0,
            "violations": violations,
            "warnings": warnings,
            "approval_required": len(warnings) > 0
        }

Risk Assessment Process

class AIRiskAssessment:
    """Structured AI risk assessment."""

    def assess_risk(self, project: dict) -> dict:
        """Comprehensive risk assessment."""

        risk_dimensions = {
            "data_risk": self.assess_data_risk(project),
            "model_risk": self.assess_model_risk(project),
            "deployment_risk": self.assess_deployment_risk(project),
            "compliance_risk": self.assess_compliance_risk(project),
            "ethical_risk": self.assess_ethical_risk(project)
        }

        # Calculate overall risk score
        weights = {
            "data_risk": 0.25,
            "model_risk": 0.20,
            "deployment_risk": 0.15,
            "compliance_risk": 0.25,
            "ethical_risk": 0.15
        }

        overall_score = sum(
            risk_dimensions[dim]["score"] * weights[dim]
            for dim in risk_dimensions
        )

        # Determine risk level
        if overall_score > 70:
            risk_level = "high"
        elif overall_score > 40:
            risk_level = "medium"
        else:
            risk_level = "low"

        return {
            "overall_score": overall_score,
            "risk_level": risk_level,
            "dimensions": risk_dimensions,
            "mitigations_required": self.get_required_mitigations(risk_dimensions),
            "approval_level": self.determine_approval_level(risk_level)
        }

    def assess_data_risk(self, project: dict) -> dict:
        """Assess data-related risks."""
        score = 0
        factors = []

        # Check for PII
        if "pii" in project.get("data_types", []):
            score += 30
            factors.append("Contains PII")

        # Check for sensitive categories
        sensitive = ["health", "financial", "biometric"]
        for s in sensitive:
            if s in project.get("data_types", []):
                score += 20
                factors.append(f"Contains {s} data")

        # Check data volume
        if project.get("data_volume", 0) > 1000000:
            score += 10
            factors.append("Large data volume")

        return {"score": min(score, 100), "factors": factors}

    def assess_ethical_risk(self, project: dict) -> dict:
        """Assess ethical risks."""
        score = 0
        factors = []

        # Check for decision impact
        if project.get("decision_impact") == "high":
            score += 40
            factors.append("High-impact decisions on individuals")

        # Check for fairness considerations
        if project.get("affects_protected_groups"):
            score += 30
            factors.append("Affects protected groups")

        # Check for transparency
        if not project.get("explainable"):
            score += 20
            factors.append("Limited explainability")

        return {"score": min(score, 100), "factors": factors}

Approval Workflow

class AIApprovalWorkflow:
    """Manage AI project approval workflows."""

    def __init__(self):
        self.pending_approvals = {}

    async def submit_for_approval(self, project: dict) -> dict:
        """Submit AI project for approval."""

        # Run risk assessment
        risk = AIRiskAssessment().assess_risk(project)

        # Check policy compliance
        compliance = AIPolicyFramework().check_compliance(project)

        if not compliance["compliant"]:
            return {
                "status": "rejected",
                "reason": "Policy violations",
                "violations": compliance["violations"]
            }

        # Determine approval path
        approval_level = risk["approval_level"]

        if approval_level == ApprovalLevel.AUTO:
            return {
                "status": "approved",
                "approval_level": "auto",
                "conditions": risk.get("mitigations_required", [])
            }

        # Create approval request
        request_id = self.create_approval_request(project, risk)

        # Notify approvers
        await self.notify_approvers(request_id, approval_level)

        return {
            "status": "pending",
            "request_id": request_id,
            "approval_level": approval_level.value,
            "expected_turnaround": self.get_sla(approval_level)
        }

    async def process_approval(
        self,
        request_id: str,
        decision: str,
        approver: str,
        comments: str = None
    ) -> dict:
        """Process approval decision."""

        request = self.pending_approvals.get(request_id)
        if not request:
            raise ValueError(f"Request {request_id} not found")

        # Record decision
        request["decision"] = {
            "status": decision,
            "approver": approver,
            "timestamp": datetime.now().isoformat(),
            "comments": comments
        }

        if decision == "approved":
            # Check if more approvals needed
            if self.requires_additional_approval(request):
                await self.escalate(request)
                return {"status": "escalated"}

            # Finalize approval
            return await self.finalize_approval(request)

        elif decision == "rejected":
            return {
                "status": "rejected",
                "reason": comments,
                "appeal_available": True
            }

        elif decision == "conditional":
            return {
                "status": "conditional_approval",
                "conditions": comments,
                "deadline": self.calculate_condition_deadline()
            }

Monitoring and Continuous Governance

class AIGovernanceMonitoring:
    """Continuous monitoring for AI governance."""

    def __init__(self):
        self.metrics = {}

    async def monitor_ai_systems(self):
        """Continuous monitoring of deployed AI systems."""

        while True:
            for system_id, system in self.get_active_systems().items():
                # Check compliance
                compliance = await self.check_runtime_compliance(system)

                # Check performance drift
                drift = await self.check_model_drift(system)

                # Check for incidents
                incidents = await self.check_incidents(system)

                # Generate alerts if needed
                if not compliance["compliant"]:
                    await self.alert("compliance_violation", system_id, compliance)

                if drift["significant"]:
                    await self.alert("model_drift", system_id, drift)

                if incidents:
                    await self.alert("incidents", system_id, incidents)

            await asyncio.sleep(300)  # Check every 5 minutes

    def generate_governance_report(self) -> dict:
        """Generate governance status report."""
        return {
            "report_date": datetime.now().isoformat(),
            "total_ai_systems": len(self.get_active_systems()),
            "compliance_status": {
                "compliant": self.count_compliant(),
                "non_compliant": self.count_non_compliant(),
                "pending_review": self.count_pending()
            },
            "risk_distribution": self.get_risk_distribution(),
            "incidents_this_month": self.count_incidents(),
            "pending_approvals": len(self.pending_approvals),
            "recommendations": self.generate_recommendations()
        }

AI governance is not bureaucracy - it’s enablement with guardrails. Build governance that enables innovation while managing risk appropriately.

Resources

Michael John Peña

Michael John Peña

Senior Data Engineer based in Sydney. Writing about data, cloud, and technology.