5 min read
Gemini 2 Updates: Google's AI Evolution and What It Means for Developers
Google’s Gemini has evolved rapidly, with Gemini 2 bringing significant improvements to multimodal capabilities and developer experience. Let’s explore what’s new and how to leverage it.
Gemini 2 Overview
Gemini 2 advances on the foundation with:
- Enhanced multimodal understanding
- Improved reasoning capabilities
- Better code generation
- Native Google Workspace integration
- Expanded context windows
Getting Started with Gemini 2
import google.generativeai as genai
genai.configure(api_key="your-api-key")
# Use Gemini 2 Pro
model = genai.GenerativeModel("gemini-2-pro")
# Simple text generation
response = model.generate_content("Explain data mesh architecture")
print(response.text)
# With generation config
response = model.generate_content(
"Design a real-time analytics pipeline",
generation_config=genai.GenerationConfig(
temperature=0.7,
top_p=0.9,
max_output_tokens=2048
)
)
Multimodal Excellence
Gemini 2’s strength is native multimodal processing:
Image Understanding
import PIL.Image
model = genai.GenerativeModel("gemini-2-pro-vision")
# Analyze architecture diagram
image = PIL.Image.open("architecture_diagram.png")
response = model.generate_content([
"Analyze this architecture diagram. Identify:",
"1. Components and their relationships",
"2. Data flow patterns",
"3. Potential bottlenecks",
"4. Suggestions for improvement",
image
])
print(response.text)
Video Analysis
# Analyze video content
video_file = genai.upload_file("meeting_recording.mp4")
response = model.generate_content([
video_file,
"""Analyze this meeting recording:
1. Summarize key discussion points
2. Identify action items and owners
3. Note any decisions made
4. Flag any concerns raised"""
])
# Gemini 2 understands temporal context in video
Audio Processing
# Transcribe and analyze audio
audio_file = genai.upload_file("customer_call.mp3")
response = model.generate_content([
audio_file,
"""Analyze this customer support call:
1. Transcribe the conversation
2. Identify customer sentiment
3. Summarize the issue and resolution
4. Rate the support quality"""
])
Code Generation Improvements
Gemini 2 excels at code tasks:
model = genai.GenerativeModel("gemini-2-pro")
# Generate complex code with context
response = model.generate_content("""
Create a Python class for managing Azure Data Factory pipelines:
Requirements:
- List all pipelines in a factory
- Trigger pipeline runs
- Monitor run status
- Handle errors gracefully
- Include type hints and docstrings
- Add unit tests
Use the azure-mgmt-datafactory SDK.
""")
print(response.text)
Code Review
code_to_review = """
def process_data(df):
df = df.dropna()
df['date'] = pd.to_datetime(df['date'])
result = df.groupby('category').sum()
return result
"""
response = model.generate_content(f"""
Review this code for:
1. Correctness
2. Performance
3. Error handling
4. Best practices
Code:
```python
{code_to_review}
Provide specific improvements. """)
## Integration with Google Cloud
### Vertex AI
```python
from google.cloud import aiplatform
from vertexai.generative_models import GenerativeModel
# Initialize Vertex AI
aiplatform.init(project="your-project", location="us-central1")
# Use Gemini 2 on Vertex AI
model = GenerativeModel("gemini-2-pro")
# With grounding (connect to Google Search or your data)
response = model.generate_content(
"What are the latest Microsoft Fabric updates?",
tools=[
Tool.from_google_search_retrieval(
grounding_config=GroundingConfig(
google_search_retrieval=GoogleSearchRetrieval()
)
)
]
)
# Response includes citations from current web content
BigQuery Integration
from google.cloud import bigquery
import google.generativeai as genai
# Combine Gemini with BigQuery
bq_client = bigquery.Client()
model = genai.GenerativeModel("gemini-2-pro")
# Natural language to SQL
nl_query = "Show me the top 10 customers by revenue last quarter"
response = model.generate_content(f"""
Convert this natural language query to BigQuery SQL:
"{nl_query}"
Available tables:
- sales (customer_id, amount, date)
- customers (id, name, segment)
Return only the SQL query.
""")
sql = response.text.strip("```sql").strip("```")
# Execute the generated query
results = bq_client.query(sql).to_dataframe()
Function Calling
Gemini 2 supports robust function calling:
# Define functions
tools = [
genai.protos.Tool(
function_declarations=[
genai.protos.FunctionDeclaration(
name="query_database",
description="Execute a SQL query against the data warehouse",
parameters=genai.protos.Schema(
type=genai.protos.Type.OBJECT,
properties={
"query": genai.protos.Schema(type=genai.protos.Type.STRING),
"database": genai.protos.Schema(type=genai.protos.Type.STRING)
},
required=["query"]
)
),
genai.protos.FunctionDeclaration(
name="create_chart",
description="Create a visualization from data",
parameters=genai.protos.Schema(
type=genai.protos.Type.OBJECT,
properties={
"chart_type": genai.protos.Schema(type=genai.protos.Type.STRING),
"data": genai.protos.Schema(type=genai.protos.Type.STRING)
}
)
)
]
)
]
model = genai.GenerativeModel("gemini-2-pro", tools=tools)
chat = model.start_chat()
response = chat.send_message("Query sales data and create a trend chart")
# Process function calls
for part in response.parts:
if fn := part.function_call:
print(f"Function: {fn.name}")
print(f"Arguments: {fn.args}")
Context Caching
Gemini 2 introduces context caching for efficiency:
# Cache large context
cached_content = genai.caching.CachedContent.create(
model="gemini-2-pro",
contents=[
"System: You are a data engineering expert.",
large_documentation_text, # Cache expensive context
code_repository_contents
],
ttl=datetime.timedelta(hours=1)
)
# Use cached context for multiple queries
model = genai.GenerativeModel.from_cached_content(cached_content)
# These queries reuse the cached context (cheaper and faster)
response1 = model.generate_content("How do I set up incremental loads?")
response2 = model.generate_content("What's the best practice for error handling?")
response3 = model.generate_content("Show me an example pipeline")
Gemini vs Competition
| Feature | Gemini 2 | GPT-4 | Claude 3.5 |
|---|---|---|---|
| Native multimodal | Excellent | Good | Good |
| Code generation | Excellent | Excellent | Excellent |
| Context window | 2M tokens | 128K | 200K |
| Google integration | Native | Via API | Via API |
| Cost | Competitive | Higher | Moderate |
Best Practices
- Use context caching for repeated queries with same context
- Leverage multimodal - Gemini excels when combining modalities
- Ground responses with Google Search or your data
- Use appropriate model size - Flash for speed, Pro for capability
- Integrate with Google Cloud for enterprise features
Gemini 2 represents Google’s serious commitment to AI. For organizations already on Google Cloud, it’s an excellent choice that integrates seamlessly with your existing infrastructure.