Back to Blog
5 min read

Gemini 2 Updates: Google's AI Evolution and What It Means for Developers

Google’s Gemini has evolved rapidly, with Gemini 2 bringing significant improvements to multimodal capabilities and developer experience. Let’s explore what’s new and how to leverage it.

Gemini 2 Overview

Gemini 2 advances on the foundation with:

  • Enhanced multimodal understanding
  • Improved reasoning capabilities
  • Better code generation
  • Native Google Workspace integration
  • Expanded context windows

Getting Started with Gemini 2

import google.generativeai as genai

genai.configure(api_key="your-api-key")

# Use Gemini 2 Pro
model = genai.GenerativeModel("gemini-2-pro")

# Simple text generation
response = model.generate_content("Explain data mesh architecture")
print(response.text)

# With generation config
response = model.generate_content(
    "Design a real-time analytics pipeline",
    generation_config=genai.GenerationConfig(
        temperature=0.7,
        top_p=0.9,
        max_output_tokens=2048
    )
)

Multimodal Excellence

Gemini 2’s strength is native multimodal processing:

Image Understanding

import PIL.Image

model = genai.GenerativeModel("gemini-2-pro-vision")

# Analyze architecture diagram
image = PIL.Image.open("architecture_diagram.png")

response = model.generate_content([
    "Analyze this architecture diagram. Identify:",
    "1. Components and their relationships",
    "2. Data flow patterns",
    "3. Potential bottlenecks",
    "4. Suggestions for improvement",
    image
])

print(response.text)

Video Analysis

# Analyze video content
video_file = genai.upload_file("meeting_recording.mp4")

response = model.generate_content([
    video_file,
    """Analyze this meeting recording:
    1. Summarize key discussion points
    2. Identify action items and owners
    3. Note any decisions made
    4. Flag any concerns raised"""
])

# Gemini 2 understands temporal context in video

Audio Processing

# Transcribe and analyze audio
audio_file = genai.upload_file("customer_call.mp3")

response = model.generate_content([
    audio_file,
    """Analyze this customer support call:
    1. Transcribe the conversation
    2. Identify customer sentiment
    3. Summarize the issue and resolution
    4. Rate the support quality"""
])

Code Generation Improvements

Gemini 2 excels at code tasks:

model = genai.GenerativeModel("gemini-2-pro")

# Generate complex code with context
response = model.generate_content("""
Create a Python class for managing Azure Data Factory pipelines:

Requirements:
- List all pipelines in a factory
- Trigger pipeline runs
- Monitor run status
- Handle errors gracefully
- Include type hints and docstrings
- Add unit tests

Use the azure-mgmt-datafactory SDK.
""")

print(response.text)

Code Review

code_to_review = """
def process_data(df):
    df = df.dropna()
    df['date'] = pd.to_datetime(df['date'])
    result = df.groupby('category').sum()
    return result
"""

response = model.generate_content(f"""
Review this code for:
1. Correctness
2. Performance
3. Error handling
4. Best practices

Code:
```python
{code_to_review}

Provide specific improvements. """)


## Integration with Google Cloud

### Vertex AI

```python
from google.cloud import aiplatform
from vertexai.generative_models import GenerativeModel

# Initialize Vertex AI
aiplatform.init(project="your-project", location="us-central1")

# Use Gemini 2 on Vertex AI
model = GenerativeModel("gemini-2-pro")

# With grounding (connect to Google Search or your data)
response = model.generate_content(
    "What are the latest Microsoft Fabric updates?",
    tools=[
        Tool.from_google_search_retrieval(
            grounding_config=GroundingConfig(
                google_search_retrieval=GoogleSearchRetrieval()
            )
        )
    ]
)

# Response includes citations from current web content

BigQuery Integration

from google.cloud import bigquery
import google.generativeai as genai

# Combine Gemini with BigQuery
bq_client = bigquery.Client()
model = genai.GenerativeModel("gemini-2-pro")

# Natural language to SQL
nl_query = "Show me the top 10 customers by revenue last quarter"

response = model.generate_content(f"""
Convert this natural language query to BigQuery SQL:
"{nl_query}"

Available tables:
- sales (customer_id, amount, date)
- customers (id, name, segment)

Return only the SQL query.
""")

sql = response.text.strip("```sql").strip("```")

# Execute the generated query
results = bq_client.query(sql).to_dataframe()

Function Calling

Gemini 2 supports robust function calling:

# Define functions
tools = [
    genai.protos.Tool(
        function_declarations=[
            genai.protos.FunctionDeclaration(
                name="query_database",
                description="Execute a SQL query against the data warehouse",
                parameters=genai.protos.Schema(
                    type=genai.protos.Type.OBJECT,
                    properties={
                        "query": genai.protos.Schema(type=genai.protos.Type.STRING),
                        "database": genai.protos.Schema(type=genai.protos.Type.STRING)
                    },
                    required=["query"]
                )
            ),
            genai.protos.FunctionDeclaration(
                name="create_chart",
                description="Create a visualization from data",
                parameters=genai.protos.Schema(
                    type=genai.protos.Type.OBJECT,
                    properties={
                        "chart_type": genai.protos.Schema(type=genai.protos.Type.STRING),
                        "data": genai.protos.Schema(type=genai.protos.Type.STRING)
                    }
                )
            )
        ]
    )
]

model = genai.GenerativeModel("gemini-2-pro", tools=tools)

chat = model.start_chat()
response = chat.send_message("Query sales data and create a trend chart")

# Process function calls
for part in response.parts:
    if fn := part.function_call:
        print(f"Function: {fn.name}")
        print(f"Arguments: {fn.args}")

Context Caching

Gemini 2 introduces context caching for efficiency:

# Cache large context
cached_content = genai.caching.CachedContent.create(
    model="gemini-2-pro",
    contents=[
        "System: You are a data engineering expert.",
        large_documentation_text,  # Cache expensive context
        code_repository_contents
    ],
    ttl=datetime.timedelta(hours=1)
)

# Use cached context for multiple queries
model = genai.GenerativeModel.from_cached_content(cached_content)

# These queries reuse the cached context (cheaper and faster)
response1 = model.generate_content("How do I set up incremental loads?")
response2 = model.generate_content("What's the best practice for error handling?")
response3 = model.generate_content("Show me an example pipeline")

Gemini vs Competition

FeatureGemini 2GPT-4Claude 3.5
Native multimodalExcellentGoodGood
Code generationExcellentExcellentExcellent
Context window2M tokens128K200K
Google integrationNativeVia APIVia API
CostCompetitiveHigherModerate

Best Practices

  1. Use context caching for repeated queries with same context
  2. Leverage multimodal - Gemini excels when combining modalities
  3. Ground responses with Google Search or your data
  4. Use appropriate model size - Flash for speed, Pro for capability
  5. Integrate with Google Cloud for enterprise features

Gemini 2 represents Google’s serious commitment to AI. For organizations already on Google Cloud, it’s an excellent choice that integrates seamlessly with your existing infrastructure.

Michael John Peña

Michael John Peña

Senior Data Engineer based in Sydney. Writing about data, cloud, and technology.