5 min read
Edge AI Improvements: Deploying Intelligence at the Data Source
Edge AI brings machine learning to where data is generated. For data platforms, this means preprocessing, filtering, and enriching data before it reaches the cloud. Let’s explore the latest improvements in edge AI deployment.
Edge AI Architecture
Data Sources Edge Layer Cloud Layer
│ │ │
▼ ▼ ▼
┌─────────┐ ┌──────────┐ ┌──────────┐
│ Sensors │─────────►│ Edge AI │──────────►│ Cloud AI │
│ Cameras │ │ - Filter │ │ - Train │
│ IoT │ │ - Enrich │ │ - Store │
│ Devices │ │ - Detect │ │ - Analyze│
└─────────┘ └──────────┘ └──────────┘
│
┌─────┴─────┐
│ Local │
│ Storage │
│ & Action │
└───────────┘
Azure IoT Edge with AI
# Azure IoT Edge module with AI inference
import asyncio
import json
from azure.iot.device.aio import IoTHubModuleClient
import onnxruntime as ort
import numpy as np
class EdgeAIModule:
def __init__(self):
self.client = None
self.model = None
async def initialize(self):
"""Initialize IoT Edge module and load AI model."""
self.client = IoTHubModuleClient.create_from_edge_environment()
await self.client.connect()
# Load ONNX model
self.model = ort.InferenceSession(
"model.onnx",
providers=['CPUExecutionProvider'] # Or GPU if available
)
# Set up message handler
self.client.on_message_received = self.handle_message
async def handle_message(self, message):
"""Process incoming sensor data with AI."""
data = json.loads(message.data.decode())
# Prepare input for model
features = np.array([
data['temperature'],
data['pressure'],
data['vibration']
]).astype(np.float32).reshape(1, -1)
# Run inference
result = self.model.run(None, {"input": features})
prediction = result[0][0]
# Decision: send to cloud or handle locally
if prediction > 0.8: # Anomaly detected
# Send alert to cloud
alert = {
"device_id": data['device_id'],
"timestamp": data['timestamp'],
"anomaly_score": float(prediction),
"raw_data": data
}
await self.client.send_message_to_output(
json.dumps(alert),
"anomaly_output"
)
else:
# Store locally, batch send later
await self.store_locally(data, prediction)
async def store_locally(self, data, score):
"""Store normal readings locally for batch upload."""
# Append to local storage
with open("/data/readings.jsonl", "a") as f:
f.write(json.dumps({**data, "score": float(score)}) + "\n")
async def main():
module = EdgeAIModule()
await module.initialize()
await asyncio.Event().wait() # Run forever
if __name__ == "__main__":
asyncio.run(main())
Model Optimization for Edge
import onnx
from onnxruntime.quantization import quantize_dynamic, QuantType
from onnxruntime.transformers import optimizer
class EdgeModelOptimizer:
def __init__(self, model_path: str):
self.model_path = model_path
def quantize(self, output_path: str):
"""Quantize model for smaller size and faster inference."""
quantize_dynamic(
model_input=self.model_path,
model_output=output_path,
weight_type=QuantType.QInt8
)
print(f"Quantized model saved to {output_path}")
# Size comparison
import os
original_size = os.path.getsize(self.model_path)
quantized_size = os.path.getsize(output_path)
print(f"Size reduction: {original_size/1024:.1f}KB -> {quantized_size/1024:.1f}KB")
print(f"Compression: {quantized_size/original_size*100:.1f}%")
def optimize_for_edge(self, output_path: str, target: str = "cpu"):
"""Optimize model graph for edge deployment."""
model = onnx.load(self.model_path)
# Graph optimizations
optimized = optimizer.optimize_model(
self.model_path,
model_type='bert' if 'bert' in self.model_path else 'gpt2',
num_heads=0,
hidden_size=0,
optimization_options=None,
opt_level=99 # Maximum optimization
)
optimized.save_model_to_file(output_path)
def benchmark(self, test_input: np.ndarray, iterations: int = 100):
"""Benchmark model inference speed."""
import time
session = ort.InferenceSession(self.model_path)
# Warm up
for _ in range(10):
session.run(None, {"input": test_input})
# Benchmark
start = time.time()
for _ in range(iterations):
session.run(None, {"input": test_input})
elapsed = time.time() - start
print(f"Average inference time: {elapsed/iterations*1000:.2f}ms")
print(f"Throughput: {iterations/elapsed:.1f} inferences/second")
Edge AI with Azure Arc
# Kubernetes manifest for Edge AI deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: edge-ai-inference
namespace: edge-ai
spec:
replicas: 2
selector:
matchLabels:
app: edge-ai
template:
metadata:
labels:
app: edge-ai
spec:
containers:
- name: inference
image: myacr.azurecr.io/edge-ai:latest
resources:
limits:
memory: "512Mi"
cpu: "500m"
# Request GPU if available
nvidia.com/gpu: 1
volumeMounts:
- name: model-storage
mountPath: /models
env:
- name: MODEL_PATH
value: /models/optimized_model.onnx
- name: BATCH_SIZE
value: "32"
volumes:
- name: model-storage
persistentVolumeClaim:
claimName: model-pvc
---
apiVersion: v1
kind: Service
metadata:
name: edge-ai-service
spec:
selector:
app: edge-ai
ports:
- port: 8080
targetPort: 8080
type: ClusterIP
Federated Learning at the Edge
import flwr as fl
import torch
class EdgeFederatedClient(fl.client.NumPyClient):
"""Federated learning client for edge devices."""
def __init__(self, model, train_data, device_id):
self.model = model
self.train_data = train_data
self.device_id = device_id
def get_parameters(self, config):
"""Return model parameters."""
return [val.cpu().numpy() for val in self.model.parameters()]
def set_parameters(self, parameters):
"""Set model parameters from server."""
params_dict = zip(self.model.parameters(), parameters)
for param, new_param in params_dict:
param.data = torch.tensor(new_param)
def fit(self, parameters, config):
"""Train model on local data."""
self.set_parameters(parameters)
# Local training
self.model.train()
optimizer = torch.optim.SGD(self.model.parameters(), lr=0.01)
for epoch in range(config.get("local_epochs", 1)):
for batch in self.train_data:
optimizer.zero_grad()
loss = self.model.training_step(batch)
loss.backward()
optimizer.step()
return self.get_parameters(config), len(self.train_data), {}
def evaluate(self, parameters, config):
"""Evaluate model on local test data."""
self.set_parameters(parameters)
loss, accuracy = self.model.evaluate(self.test_data)
return float(loss), len(self.test_data), {"accuracy": float(accuracy)}
# Start federated client
def start_edge_client(server_address: str):
model = create_model()
train_data = load_local_data()
client = EdgeFederatedClient(model, train_data, device_id="edge-001")
fl.client.start_numpy_client(
server_address=server_address,
client=client
)
Real-Time Edge Inference
import asyncio
from collections import deque
import numpy as np
class RealTimeEdgeInference:
def __init__(self, model_path: str, batch_size: int = 16):
self.model = ort.InferenceSession(model_path)
self.batch_size = batch_size
self.queue = deque(maxlen=1000)
self.results = {}
async def ingest(self, data_id: str, features: np.ndarray):
"""Ingest data for batch processing."""
self.queue.append((data_id, features))
# Process when batch is ready
if len(self.queue) >= self.batch_size:
await self._process_batch()
async def _process_batch(self):
"""Process a batch of inputs."""
batch_ids = []
batch_features = []
for _ in range(min(self.batch_size, len(self.queue))):
data_id, features = self.queue.popleft()
batch_ids.append(data_id)
batch_features.append(features)
# Batch inference
batch_input = np.vstack(batch_features).astype(np.float32)
predictions = self.model.run(None, {"input": batch_input})[0]
# Store results
for data_id, pred in zip(batch_ids, predictions):
self.results[data_id] = pred
async def get_result(self, data_id: str, timeout: float = 1.0) -> np.ndarray:
"""Get inference result for a specific input."""
start = asyncio.get_event_loop().time()
while data_id not in self.results:
if asyncio.get_event_loop().time() - start > timeout:
raise TimeoutError(f"Result not ready for {data_id}")
await asyncio.sleep(0.01)
return self.results.pop(data_id)
Best Practices
- Optimize models: Quantize and prune for edge deployment
- Handle offline: Design for intermittent connectivity
- Local-first: Process locally, sync to cloud periodically
- Monitor health: Track edge device performance
- Update safely: Implement safe model update mechanisms
- Security: Encrypt models and secure inference endpoints
Edge AI reduces latency, bandwidth, and cloud costs while improving privacy. Design your data architecture to leverage edge intelligence where it makes sense.