Back to Blog
5 min read

SLM vs LLM: Choosing the Right Model Size Strategy

Small Language Models (SLMs) and Large Language Models (LLMs) serve different purposes. Understanding when to use each is crucial for building cost-effective, performant AI applications. Let’s develop a comprehensive strategy.

The Model Size Spectrum

Size        Parameters     Examples              Sweet Spot
─────────────────────────────────────────────────────────────
Tiny        < 1B          DistilBERT            Embeddings, classification
Small       1-7B          Phi-3, Llama-3-8B     On-device, high-volume
Medium      7-70B         Llama-3-70B, Mixtral  Complex tasks, balanced
Large       70B+          GPT-4, Claude Opus    Reasoning, multi-modal
Frontier    Unknown       GPT-5, Claude 4       Research, hardest tasks

Decision Framework

def select_model_tier(task_requirements: dict) -> str:
    """Select appropriate model tier based on requirements."""

    # Extract requirements
    complexity = task_requirements.get("complexity", "medium")
    latency_ms = task_requirements.get("max_latency_ms", 1000)
    cost_per_1k = task_requirements.get("max_cost_per_1k_requests", 1.0)
    accuracy_required = task_requirements.get("min_accuracy", 0.9)
    volume_per_day = task_requirements.get("requests_per_day", 1000)
    needs_reasoning = task_requirements.get("multi_step_reasoning", False)
    context_length = task_requirements.get("context_length", 4000)

    # Decision tree
    if needs_reasoning and complexity == "high":
        return "large"  # GPT-4, Claude Opus

    if latency_ms < 100:
        return "small"  # Must be on-device

    if cost_per_1k < 0.01 and volume_per_day > 100000:
        return "small"  # Cost optimization

    if context_length > 32000:
        return "large"  # Long context

    if complexity == "simple":
        return "tiny" if accuracy_required < 0.95 else "small"

    if complexity == "medium":
        return "small" if accuracy_required < 0.92 else "medium"

    return "medium"  # Default

# Examples
print(select_model_tier({
    "complexity": "simple",
    "max_latency_ms": 50,
    "requests_per_day": 1000000
}))  # "small"

print(select_model_tier({
    "complexity": "high",
    "multi_step_reasoning": True,
    "min_accuracy": 0.98
}))  # "large"

Cost Analysis

import pandas as pd

# Cost comparison (prices as of 2025, approximate)
model_costs = pd.DataFrame({
    "Model": ["GPT-4o", "GPT-4o-mini", "Claude 3.5 Sonnet", "Phi-3-mini", "Llama-3-8B"],
    "Input_per_1M": [5.00, 0.15, 3.00, 0.00, 0.00],  # $ per 1M tokens
    "Output_per_1M": [15.00, 0.60, 15.00, 0.00, 0.00],
    "Self_hosted_per_hour": [0, 0, 0, 0.50, 1.00],  # GPU costs
    "Latency_avg_ms": [500, 200, 400, 50, 100],
    "Quality_score": [95, 85, 93, 75, 80]
})

def calculate_monthly_cost(
    model: str,
    requests_per_day: int,
    avg_input_tokens: int,
    avg_output_tokens: int,
    self_hosted: bool = False
) -> dict:
    """Calculate monthly costs for a model."""

    model_data = model_costs[model_costs["Model"] == model].iloc[0]

    if self_hosted:
        # Self-hosted cost (assume 24/7)
        monthly_cost = model_data["Self_hosted_per_hour"] * 24 * 30
    else:
        # API cost
        daily_input_tokens = requests_per_day * avg_input_tokens
        daily_output_tokens = requests_per_day * avg_output_tokens

        daily_cost = (
            (daily_input_tokens / 1_000_000) * model_data["Input_per_1M"] +
            (daily_output_tokens / 1_000_000) * model_data["Output_per_1M"]
        )
        monthly_cost = daily_cost * 30

    return {
        "model": model,
        "monthly_cost": monthly_cost,
        "cost_per_request": monthly_cost / (requests_per_day * 30),
        "quality_score": model_data["Quality_score"],
        "avg_latency": model_data["Latency_avg_ms"]
    }

# Compare scenarios
for model in ["GPT-4o", "GPT-4o-mini", "Phi-3-mini"]:
    result = calculate_monthly_cost(
        model=model,
        requests_per_day=10000,
        avg_input_tokens=500,
        avg_output_tokens=200,
        self_hosted=(model == "Phi-3-mini")
    )
    print(f"{model}: ${result['monthly_cost']:.2f}/month, Quality: {result['quality_score']}")

Hybrid Architecture

from enum import Enum
from dataclasses import dataclass

class ModelTier(Enum):
    SMALL = "small"
    MEDIUM = "medium"
    LARGE = "large"

@dataclass
class ModelConfig:
    name: str
    tier: ModelTier
    endpoint: str
    max_tokens: int
    cost_per_1k_tokens: float

class HybridModelRouter:
    """Route requests to appropriate model tier."""

    def __init__(self):
        self.models = {
            ModelTier.SMALL: ModelConfig(
                name="phi-3-mini",
                tier=ModelTier.SMALL,
                endpoint="http://localhost:8080",
                max_tokens=4096,
                cost_per_1k_tokens=0.0001
            ),
            ModelTier.MEDIUM: ModelConfig(
                name="gpt-4o-mini",
                tier=ModelTier.MEDIUM,
                endpoint="https://api.openai.com",
                max_tokens=128000,
                cost_per_1k_tokens=0.0003
            ),
            ModelTier.LARGE: ModelConfig(
                name="gpt-4o",
                tier=ModelTier.LARGE,
                endpoint="https://api.openai.com",
                max_tokens=128000,
                cost_per_1k_tokens=0.01
            )
        }

    async def route(self, request: dict) -> ModelConfig:
        """Route request to appropriate model."""

        # Simple classification
        if request.get("task") in ["classification", "extraction", "embedding"]:
            return self.models[ModelTier.SMALL]

        # Check complexity signals
        prompt_length = len(request.get("prompt", ""))
        needs_reasoning = request.get("reasoning", False)
        quality_requirement = request.get("quality", "standard")

        if needs_reasoning or quality_requirement == "high":
            return self.models[ModelTier.LARGE]

        if prompt_length > 10000 or quality_requirement == "medium":
            return self.models[ModelTier.MEDIUM]

        return self.models[ModelTier.SMALL]

    async def execute(self, request: dict) -> dict:
        """Execute request on selected model with fallback."""

        model = await self.route(request)

        try:
            result = await self._call_model(model, request)
            return result
        except Exception as e:
            # Fallback to larger model
            if model.tier == ModelTier.SMALL:
                return await self._call_model(self.models[ModelTier.MEDIUM], request)
            elif model.tier == ModelTier.MEDIUM:
                return await self._call_model(self.models[ModelTier.LARGE], request)
            raise

Task-Specific Model Selection

# Recommended models by task

task_recommendations = {
    "text_classification": {
        "recommended": "phi-3-mini",
        "alternative": "fine-tuned-bert",
        "reasoning": "Simple task, high volume, latency sensitive"
    },
    "named_entity_recognition": {
        "recommended": "fine-tuned-distilbert",
        "alternative": "phi-3-mini",
        "reasoning": "Structured output, can be fine-tuned cheaply"
    },
    "code_completion": {
        "recommended": "phi-3-mini",
        "alternative": "gpt-4o-mini",
        "reasoning": "Phi excels at code, low latency for IDE"
    },
    "document_summarization": {
        "recommended": "gpt-4o-mini",
        "alternative": "claude-3-haiku",
        "reasoning": "Good quality/cost balance, handles long docs"
    },
    "complex_analysis": {
        "recommended": "gpt-4o",
        "alternative": "claude-3-opus",
        "reasoning": "Needs reasoning and nuance"
    },
    "creative_writing": {
        "recommended": "claude-3-opus",
        "alternative": "gpt-4o",
        "reasoning": "Best creative capabilities"
    },
    "data_extraction_structured": {
        "recommended": "gpt-4o-mini",
        "alternative": "phi-3-small",
        "reasoning": "Good at structured output, cost effective"
    },
    "real_time_chat": {
        "recommended": "phi-3-mini (on-device)",
        "alternative": "gpt-4o-mini",
        "reasoning": "Latency is critical"
    }
}

Cascade Architecture

class ModelCascade:
    """Try small model first, escalate if needed."""

    def __init__(self, small_model, medium_model, large_model):
        self.models = [small_model, medium_model, large_model]
        self.confidence_threshold = 0.8

    async def execute(self, prompt: str) -> dict:
        """Execute with cascade fallback."""

        for i, model in enumerate(self.models):
            result = await model.generate(prompt)

            # Check if result is confident enough
            confidence = await self._assess_confidence(result, prompt)

            if confidence >= self.confidence_threshold:
                return {
                    "response": result,
                    "model_used": model.name,
                    "confidence": confidence,
                    "cascade_level": i
                }

        # Return large model result regardless of confidence
        return {
            "response": result,
            "model_used": self.models[-1].name,
            "confidence": confidence,
            "cascade_level": len(self.models) - 1
        }

    async def _assess_confidence(self, result: str, prompt: str) -> float:
        """Assess confidence in result."""
        # Could use:
        # - Self-consistency (generate multiple and compare)
        # - Perplexity score
        # - Task-specific validation
        # - Small classifier model
        pass

Best Practices

  1. Start small: Begin with smallest model that might work
  2. Measure quality: Establish benchmarks for your specific tasks
  3. Consider total cost: Include latency, infrastructure, maintenance
  4. Use routing: Different tasks warrant different models
  5. Enable fallback: Cascade to larger models when needed
  6. Fine-tune when possible: Custom small models often beat generic large ones

The right model isn’t always the biggest one. Match model capability to task requirements for optimal cost, latency, and quality.

Michael John Peña

Michael John Peña

Senior Data Engineer based in Sydney. Writing about data, cloud, and technology.