5 min read
Vector Database Evolution: What's Changing in 2025
Vector databases have matured significantly. In 2025, we’re seeing major improvements in scalability, cost-efficiency, and integration with traditional databases. Let’s explore the evolution.
The 2025 Vector Database Landscape
Specialized Vector DBs Traditional DBs + Vector Cloud-Native
─────────────────────────────────────────────────────────────────────────
Pinecone PostgreSQL + pgvector Azure AI Search
Weaviate SQL Server + Vector Amazon OpenSearch
Qdrant MongoDB Atlas Vector Google Vertex AI
Milvus Cosmos DB + Vector Snowflake Cortex
Chroma Redis Stack Databricks Vector
Key Trends
1. Hybrid Transactional-Vector Workloads
-- Traditional DBs now handle vector natively
-- Example: Cosmos DB with vector search
-- Create container with vector indexing
{
"id": "documents",
"partitionKey": "/category",
"vectorEmbeddingPolicy": {
"vectorEmbeddings": [{
"path": "/embedding",
"dataType": "float32",
"dimensions": 1536,
"distanceFunction": "cosine"
}]
},
"indexingPolicy": {
"vectorIndexes": [{
"path": "/embedding",
"type": "diskANN" -- Scalable vector index
}]
}
}
-- Query combining vector and traditional filters
SELECT c.id, c.title, VectorDistance(c.embedding, @query) AS score
FROM c
WHERE c.category = 'technical'
AND c.date > '2024-01-01'
ORDER BY VectorDistance(c.embedding, @query)
OFFSET 0 LIMIT 10
2. Quantized Vectors for Cost Savings
from azure.search.documents.indexes.models import (
VectorSearch,
ScalarQuantizationCompression,
BinaryQuantizationCompression
)
# Different quantization strategies
quantization_options = {
"scalar_int8": {
"storage_reduction": "4x",
"recall_impact": "< 1%",
"use_case": "Most workloads"
},
"binary": {
"storage_reduction": "32x",
"recall_impact": "5-10%",
"use_case": "High-volume, lower precision OK"
},
"product_quantization": {
"storage_reduction": "8-16x",
"recall_impact": "2-5%",
"use_case": "Balanced efficiency"
}
}
# Azure AI Search with scalar quantization
vector_search = VectorSearch(
compressions=[
ScalarQuantizationCompression(
name="sq",
quantized_data_type="int8",
rescoring_method="original_vectors" # Rerank with full precision
)
]
)
3. Multi-Vector Representations
class MultiVectorDocument:
"""Document with multiple vector representations."""
def __init__(self, content: str, embedding_models: list):
self.content = content
self.vectors = {}
async def generate_vectors(self):
"""Generate multiple vector representations."""
# Dense vector for semantic search
self.vectors["dense"] = await self.embed_dense(self.content)
# Sparse vector for keyword-like matching (BM25-style)
self.vectors["sparse"] = await self.embed_sparse(self.content)
# Late interaction vectors (ColBERT-style)
self.vectors["token_vectors"] = await self.embed_colbert(self.content)
# Summary vector for document-level matching
summary = await self.summarize(self.content)
self.vectors["summary"] = await self.embed_dense(summary)
# Index structure supporting multiple vectors
index_config = {
"fields": [
{"name": "dense_vector", "type": "float32", "dimensions": 1536},
{"name": "sparse_vector", "type": "sparse_float32"}, # New: sparse support
{"name": "token_vectors", "type": "float32_array", "dimensions": 128},
],
"search_strategy": "multi_vector_fusion"
}
4. Real-Time Vector Updates
class StreamingVectorIndex:
"""Vector index with streaming updates."""
def __init__(self, index_client):
self.client = index_client
self.buffer = []
self.buffer_size = 100
async def upsert(self, doc_id: str, vector: list, metadata: dict):
"""Buffer and batch upsert vectors."""
self.buffer.append({
"id": doc_id,
"vector": vector,
**metadata
})
if len(self.buffer) >= self.buffer_size:
await self._flush()
async def upsert_stream(self, doc_stream):
"""Process streaming document updates."""
async for doc in doc_stream:
# Generate vector
vector = await self.embed(doc["content"])
# Upsert with deduplication
await self.upsert(
doc_id=doc["id"],
vector=vector,
metadata={"timestamp": datetime.utcnow()}
)
async def _flush(self):
"""Flush buffer to index."""
if self.buffer:
await self.client.upload_documents(self.buffer)
self.buffer = []
5. Federated Vector Search
class FederatedVectorSearch:
"""Search across multiple vector indexes."""
def __init__(self, indexes: dict):
self.indexes = indexes # name -> client
async def search(
self,
query_vector: list,
index_names: list = None,
top_k: int = 10
) -> list:
"""Search across multiple indexes."""
if index_names is None:
index_names = list(self.indexes.keys())
# Parallel search across indexes
tasks = [
self._search_index(name, query_vector, top_k * 2)
for name in index_names
]
results = await asyncio.gather(*tasks)
# Merge and rerank
all_results = []
for index_name, index_results in zip(index_names, results):
for result in index_results:
result["source_index"] = index_name
all_results.append(result)
# Sort by score
all_results.sort(key=lambda x: x["score"], reverse=True)
return all_results[:top_k]
async def _search_index(self, name: str, vector: list, top_k: int):
"""Search single index."""
client = self.indexes[name]
return await client.search(vector, top_k=top_k)
Performance Benchmarks (2025)
# Approximate performance characteristics
benchmarks = {
"azure_ai_search": {
"index_size": "1B vectors",
"query_latency_p99": "50ms",
"qps": "1000",
"cost_per_million_vectors": "$50/month"
},
"cosmos_db_vector": {
"index_size": "100M vectors",
"query_latency_p99": "20ms",
"qps": "5000",
"cost_per_million_vectors": "$100/month"
},
"pgvector": {
"index_size": "10M vectors",
"query_latency_p99": "30ms",
"qps": "500",
"cost_per_million_vectors": "$20/month"
},
"pinecone": {
"index_size": "1B vectors",
"query_latency_p99": "30ms",
"qps": "2000",
"cost_per_million_vectors": "$80/month"
}
}
Best Practices for 2025
class VectorDBBestPractices:
"""Current best practices for vector databases."""
recommendations = {
"dimensionality": {
"rule": "Use 256-1024 dimensions when possible",
"reason": "text-embedding-3 allows dimension reduction",
"example": "text-embedding-3-large with dimensions=1024"
},
"quantization": {
"rule": "Enable scalar quantization by default",
"reason": "4x cost savings with <1% recall loss",
"exception": "Disable for highest-precision needs"
},
"hybrid_search": {
"rule": "Combine vector with keyword search",
"reason": "Best of both worlds for retrieval quality",
"implementation": "RRF or linear combination of scores"
},
"filtering": {
"rule": "Use pre-filtering when filter is very selective",
"reason": "Reduces vector search space",
"threshold": "Filter reduces results by >90%"
},
"batching": {
"rule": "Batch vector operations when possible",
"reason": "Better throughput and cost efficiency",
"batch_size": "100-1000 documents"
}
}
Migration Considerations
- Evaluate native vector support: Your existing DB may now support vectors
- Consider quantization: New indexes should enable compression
- Plan for hybrid: Build for combined vector + keyword search
- Test at scale: Benchmarks vary significantly with data size
- Monitor costs: Vector storage adds to database costs
Vector databases in 2025 are more capable, efficient, and integrated than ever. Choose based on your specific requirements for scale, latency, and integration needs.