Back to Blog
5 min read

Vector Database Evolution: What's Changing in 2025

Vector databases have matured significantly. In 2025, we’re seeing major improvements in scalability, cost-efficiency, and integration with traditional databases. Let’s explore the evolution.

The 2025 Vector Database Landscape

Specialized Vector DBs        Traditional DBs + Vector       Cloud-Native
─────────────────────────────────────────────────────────────────────────
Pinecone                      PostgreSQL + pgvector          Azure AI Search
Weaviate                      SQL Server + Vector            Amazon OpenSearch
Qdrant                        MongoDB Atlas Vector           Google Vertex AI
Milvus                        Cosmos DB + Vector             Snowflake Cortex
Chroma                        Redis Stack                    Databricks Vector

1. Hybrid Transactional-Vector Workloads

-- Traditional DBs now handle vector natively
-- Example: Cosmos DB with vector search

-- Create container with vector indexing
{
    "id": "documents",
    "partitionKey": "/category",
    "vectorEmbeddingPolicy": {
        "vectorEmbeddings": [{
            "path": "/embedding",
            "dataType": "float32",
            "dimensions": 1536,
            "distanceFunction": "cosine"
        }]
    },
    "indexingPolicy": {
        "vectorIndexes": [{
            "path": "/embedding",
            "type": "diskANN"  -- Scalable vector index
        }]
    }
}

-- Query combining vector and traditional filters
SELECT c.id, c.title, VectorDistance(c.embedding, @query) AS score
FROM c
WHERE c.category = 'technical'
  AND c.date > '2024-01-01'
ORDER BY VectorDistance(c.embedding, @query)
OFFSET 0 LIMIT 10

2. Quantized Vectors for Cost Savings

from azure.search.documents.indexes.models import (
    VectorSearch,
    ScalarQuantizationCompression,
    BinaryQuantizationCompression
)

# Different quantization strategies
quantization_options = {
    "scalar_int8": {
        "storage_reduction": "4x",
        "recall_impact": "< 1%",
        "use_case": "Most workloads"
    },
    "binary": {
        "storage_reduction": "32x",
        "recall_impact": "5-10%",
        "use_case": "High-volume, lower precision OK"
    },
    "product_quantization": {
        "storage_reduction": "8-16x",
        "recall_impact": "2-5%",
        "use_case": "Balanced efficiency"
    }
}

# Azure AI Search with scalar quantization
vector_search = VectorSearch(
    compressions=[
        ScalarQuantizationCompression(
            name="sq",
            quantized_data_type="int8",
            rescoring_method="original_vectors"  # Rerank with full precision
        )
    ]
)

3. Multi-Vector Representations

class MultiVectorDocument:
    """Document with multiple vector representations."""

    def __init__(self, content: str, embedding_models: list):
        self.content = content
        self.vectors = {}

    async def generate_vectors(self):
        """Generate multiple vector representations."""

        # Dense vector for semantic search
        self.vectors["dense"] = await self.embed_dense(self.content)

        # Sparse vector for keyword-like matching (BM25-style)
        self.vectors["sparse"] = await self.embed_sparse(self.content)

        # Late interaction vectors (ColBERT-style)
        self.vectors["token_vectors"] = await self.embed_colbert(self.content)

        # Summary vector for document-level matching
        summary = await self.summarize(self.content)
        self.vectors["summary"] = await self.embed_dense(summary)

# Index structure supporting multiple vectors
index_config = {
    "fields": [
        {"name": "dense_vector", "type": "float32", "dimensions": 1536},
        {"name": "sparse_vector", "type": "sparse_float32"},  # New: sparse support
        {"name": "token_vectors", "type": "float32_array", "dimensions": 128},
    ],
    "search_strategy": "multi_vector_fusion"
}

4. Real-Time Vector Updates

class StreamingVectorIndex:
    """Vector index with streaming updates."""

    def __init__(self, index_client):
        self.client = index_client
        self.buffer = []
        self.buffer_size = 100

    async def upsert(self, doc_id: str, vector: list, metadata: dict):
        """Buffer and batch upsert vectors."""
        self.buffer.append({
            "id": doc_id,
            "vector": vector,
            **metadata
        })

        if len(self.buffer) >= self.buffer_size:
            await self._flush()

    async def upsert_stream(self, doc_stream):
        """Process streaming document updates."""
        async for doc in doc_stream:
            # Generate vector
            vector = await self.embed(doc["content"])

            # Upsert with deduplication
            await self.upsert(
                doc_id=doc["id"],
                vector=vector,
                metadata={"timestamp": datetime.utcnow()}
            )

    async def _flush(self):
        """Flush buffer to index."""
        if self.buffer:
            await self.client.upload_documents(self.buffer)
            self.buffer = []
class FederatedVectorSearch:
    """Search across multiple vector indexes."""

    def __init__(self, indexes: dict):
        self.indexes = indexes  # name -> client

    async def search(
        self,
        query_vector: list,
        index_names: list = None,
        top_k: int = 10
    ) -> list:
        """Search across multiple indexes."""

        if index_names is None:
            index_names = list(self.indexes.keys())

        # Parallel search across indexes
        tasks = [
            self._search_index(name, query_vector, top_k * 2)
            for name in index_names
        ]
        results = await asyncio.gather(*tasks)

        # Merge and rerank
        all_results = []
        for index_name, index_results in zip(index_names, results):
            for result in index_results:
                result["source_index"] = index_name
                all_results.append(result)

        # Sort by score
        all_results.sort(key=lambda x: x["score"], reverse=True)

        return all_results[:top_k]

    async def _search_index(self, name: str, vector: list, top_k: int):
        """Search single index."""
        client = self.indexes[name]
        return await client.search(vector, top_k=top_k)

Performance Benchmarks (2025)

# Approximate performance characteristics

benchmarks = {
    "azure_ai_search": {
        "index_size": "1B vectors",
        "query_latency_p99": "50ms",
        "qps": "1000",
        "cost_per_million_vectors": "$50/month"
    },
    "cosmos_db_vector": {
        "index_size": "100M vectors",
        "query_latency_p99": "20ms",
        "qps": "5000",
        "cost_per_million_vectors": "$100/month"
    },
    "pgvector": {
        "index_size": "10M vectors",
        "query_latency_p99": "30ms",
        "qps": "500",
        "cost_per_million_vectors": "$20/month"
    },
    "pinecone": {
        "index_size": "1B vectors",
        "query_latency_p99": "30ms",
        "qps": "2000",
        "cost_per_million_vectors": "$80/month"
    }
}

Best Practices for 2025

class VectorDBBestPractices:
    """Current best practices for vector databases."""

    recommendations = {
        "dimensionality": {
            "rule": "Use 256-1024 dimensions when possible",
            "reason": "text-embedding-3 allows dimension reduction",
            "example": "text-embedding-3-large with dimensions=1024"
        },
        "quantization": {
            "rule": "Enable scalar quantization by default",
            "reason": "4x cost savings with <1% recall loss",
            "exception": "Disable for highest-precision needs"
        },
        "hybrid_search": {
            "rule": "Combine vector with keyword search",
            "reason": "Best of both worlds for retrieval quality",
            "implementation": "RRF or linear combination of scores"
        },
        "filtering": {
            "rule": "Use pre-filtering when filter is very selective",
            "reason": "Reduces vector search space",
            "threshold": "Filter reduces results by >90%"
        },
        "batching": {
            "rule": "Batch vector operations when possible",
            "reason": "Better throughput and cost efficiency",
            "batch_size": "100-1000 documents"
        }
    }

Migration Considerations

  1. Evaluate native vector support: Your existing DB may now support vectors
  2. Consider quantization: New indexes should enable compression
  3. Plan for hybrid: Build for combined vector + keyword search
  4. Test at scale: Benchmarks vary significantly with data size
  5. Monitor costs: Vector storage adds to database costs

Vector databases in 2025 are more capable, efficient, and integrated than ever. Choose based on your specific requirements for scale, latency, and integration needs.

Michael John Peña

Michael John Peña

Senior Data Engineer based in Sydney. Writing about data, cloud, and technology.