1 min read
Semantic Kernel Patterns: Building AI Applications with Microsoft's SDK
Semantic Kernel is Microsoft’s SDK for building AI applications. Let’s explore key patterns and best practices.
Semantic Kernel Fundamentals
import semantic_kernel as sk
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion
# Initialize kernel
kernel = sk.Kernel()
# Add AI service
kernel.add_service(AzureChatCompletion(
deployment_name="gpt-4o",
endpoint=azure_endpoint,
api_key=api_key
))
# Create a plugin with functions
class DataAnalysisPlugin:
@sk.kernel_function(description="Query the database")
async def query_database(self, query: str) -> str:
# Execute query
return results
@sk.kernel_function(description="Analyze data patterns")
async def analyze_patterns(self, data: str) -> str:
# Analysis logic
return analysis
kernel.add_plugin(DataAnalysisPlugin(), "data")
# Use natural language to invoke
result = await kernel.invoke_prompt(
"Query the sales database and analyze the patterns",
plugin_name="data"
)
Semantic Kernel provides a clean abstraction for building AI applications with plugins and natural language orchestration.