1 min read
AI Orchestration Frameworks: Building Complex AI Workflows
Complex AI applications require orchestration of multiple models, tools, and workflows. Let’s explore the frameworks.
Orchestration Options
# AutoGen for multi-agent orchestration
from autogen import AssistantAgent, UserProxyAgent
assistant = AssistantAgent(
name="DataAnalyst",
llm_config={"model": "gpt-4o"},
system_message="You analyze data and provide insights."
)
user_proxy = UserProxyAgent(
name="User",
human_input_mode="NEVER",
code_execution_config={"work_dir": "coding"}
)
user_proxy.initiate_chat(assistant, message="Analyze the sales trends")
# LangGraph for workflow orchestration
from langgraph.graph import StateGraph
def analyze_node(state):
# Analysis logic
return {"analysis": result}
def decide_next(state):
if state["needs_more_data"]:
return "fetch_data"
return "complete"
workflow = StateGraph(State)
workflow.add_node("analyze", analyze_node)
workflow.add_conditional_edges("analyze", decide_next)
app = workflow.compile()
result = app.invoke({"query": "Analyze sales"})
Choose orchestration frameworks based on workflow complexity and team expertise.