2 min read
Data Mesh and AI: Decentralized Intelligence at Scale
Data mesh principles align well with AI deployment. Let’s explore how to build AI capabilities into data products.
AI-Enabled Data Products
from dataclasses import dataclass
from typing import Protocol
@dataclass
class DataProduct:
"""Self-contained data product with AI capabilities."""
domain: str
name: str
schema: dict
sla: dict
class AIEnabledDataProduct(DataProduct):
"""Data product with embedded AI capabilities."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.embedding_model = None
self.inference_endpoint = None
def enable_semantic_search(self, embedding_model: str):
"""Add semantic search capability to data product."""
self.embedding_model = embedding_model
# Create vector index on key fields
self._create_vector_index()
def enable_ai_inference(self, model_endpoint: str):
"""Add AI inference capability."""
self.inference_endpoint = model_endpoint
async def semantic_query(self, question: str) -> list:
"""Query data product using natural language."""
embedding = await self.get_embedding(question)
return self.vector_search(embedding)
async def ai_transform(self, data: dict) -> dict:
"""Apply AI transformation to data."""
response = await self.call_inference(data)
return self.merge_ai_output(data, response)
class DataMeshPlatform:
"""Platform for managing AI-enabled data products."""
def __init__(self):
self.products = {}
self.discovery_service = DiscoveryService()
def register_product(self, product: AIEnabledDataProduct):
"""Register data product with discovery."""
self.products[product.name] = product
self.discovery_service.index(product)
async def federated_query(self, question: str) -> dict:
"""Query across multiple data products."""
relevant_products = self.discovery_service.find(question)
results = {}
for product in relevant_products:
results[product.name] = await product.semantic_query(question)
return results
Data mesh with AI enables domain teams to own both data and intelligence.