Back to Blog
2 min read

Data Mesh and AI: Decentralized Intelligence at Scale

Data mesh principles align well with AI deployment. Let’s explore how to build AI capabilities into data products.

AI-Enabled Data Products

from dataclasses import dataclass
from typing import Protocol

@dataclass
class DataProduct:
    """Self-contained data product with AI capabilities."""
    domain: str
    name: str
    schema: dict
    sla: dict

class AIEnabledDataProduct(DataProduct):
    """Data product with embedded AI capabilities."""

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.embedding_model = None
        self.inference_endpoint = None

    def enable_semantic_search(self, embedding_model: str):
        """Add semantic search capability to data product."""
        self.embedding_model = embedding_model
        # Create vector index on key fields
        self._create_vector_index()

    def enable_ai_inference(self, model_endpoint: str):
        """Add AI inference capability."""
        self.inference_endpoint = model_endpoint

    async def semantic_query(self, question: str) -> list:
        """Query data product using natural language."""
        embedding = await self.get_embedding(question)
        return self.vector_search(embedding)

    async def ai_transform(self, data: dict) -> dict:
        """Apply AI transformation to data."""
        response = await self.call_inference(data)
        return self.merge_ai_output(data, response)


class DataMeshPlatform:
    """Platform for managing AI-enabled data products."""

    def __init__(self):
        self.products = {}
        self.discovery_service = DiscoveryService()

    def register_product(self, product: AIEnabledDataProduct):
        """Register data product with discovery."""
        self.products[product.name] = product
        self.discovery_service.index(product)

    async def federated_query(self, question: str) -> dict:
        """Query across multiple data products."""
        relevant_products = self.discovery_service.find(question)
        results = {}
        for product in relevant_products:
            results[product.name] = await product.semantic_query(question)
        return results

Data mesh with AI enables domain teams to own both data and intelligence.

Michael John Peña

Michael John Peña

Senior Data Engineer based in Sydney. Writing about data, cloud, and technology.