Back to Blog
2 min read

AI-Powered Documentation: Keeping Docs in Sync with Code

AI can generate and maintain documentation that stays synchronized with your codebase.

Automated Documentation System

from azure.ai.openai import AzureOpenAI
import ast
import os

class AIDocGenerator:
    def __init__(self, openai_client: AzureOpenAI):
        self.openai = openai_client

    async def generate_function_docs(self, code: str) -> str:
        """Generate docstrings for functions."""
        response = await self.openai.chat.completions.create(
            model="gpt-4o",
            messages=[{
                "role": "system",
                "content": """Generate comprehensive docstrings for this code.
                Include:
                - Brief description
                - Args with types and descriptions
                - Returns description
                - Raises (if applicable)
                - Example usage
                Follow Google style docstrings."""
            }, {
                "role": "user",
                "content": code
            }]
        )
        return response.choices[0].message.content

    async def generate_readme(self, project_structure: dict, sample_code: str) -> str:
        """Generate project README."""
        response = await self.openai.chat.completions.create(
            model="gpt-4o",
            messages=[{
                "role": "system",
                "content": """Generate a comprehensive README.md including:
                - Project overview
                - Installation instructions
                - Quick start guide
                - Configuration options
                - API reference
                - Contributing guidelines"""
            }, {
                "role": "user",
                "content": f"Structure: {project_structure}\nSample: {sample_code}"
            }]
        )
        return response.choices[0].message.content

    async def generate_api_docs(self, openapi_spec: dict) -> str:
        """Generate human-readable API documentation."""
        response = await self.openai.chat.completions.create(
            model="gpt-4o",
            messages=[{
                "role": "user",
                "content": f"Generate user-friendly API docs from: {openapi_spec}"
            }]
        )
        return response.choices[0].message.content

    async def detect_doc_drift(self, code: str, existing_docs: str) -> list[dict]:
        """Detect where documentation has drifted from code."""
        response = await self.openai.chat.completions.create(
            model="gpt-4o",
            messages=[{
                "role": "system",
                "content": "Compare code with docs. Identify inconsistencies."
            }, {
                "role": "user",
                "content": f"Code:\n{code}\n\nDocs:\n{existing_docs}"
            }]
        )
        return self.parse_drift_issues(response)

AI-generated documentation reduces maintenance burden while improving quality.

Michael John Peña

Michael John Peña

Senior Data Engineer based in Sydney. Writing about data, cloud, and technology.