1 min read
Vector Search Optimization: Scaling to Billions of Vectors
As vector databases grow, optimization becomes critical. Here’s how to scale vector search effectively.
Vector Search at Scale
from azure.search.documents import SearchClient
from azure.search.documents.indexes.models import (
SearchIndex,
VectorSearch,
HnswAlgorithmConfiguration,
VectorSearchProfile,
ScalarQuantizationCompressionConfiguration
)
class OptimizedVectorSearch:
def __init__(self, search_client: SearchClient):
self.client = search_client
def create_optimized_index(self) -> SearchIndex:
"""Create index with optimized vector configuration."""
return SearchIndex(
name="optimized-vectors",
fields=[
SearchableField(name="id", type="Edm.String", key=True),
SearchableField(name="content", type="Edm.String"),
SearchField(
name="embedding",
type="Collection(Edm.Single)",
vector_search_dimensions=1536,
vector_search_profile_name="optimized-profile"
)
],
vector_search=VectorSearch(
algorithms=[
HnswAlgorithmConfiguration(
name="hnsw-config",
parameters={
"m": 4, # Connections per node (lower = faster, less accurate)
"efConstruction": 400, # Build quality
"efSearch": 500, # Search quality
"metric": "cosine"
}
)
],
compressions=[
ScalarQuantizationCompressionConfiguration(
name="scalar-quantization",
parameters={
"quantizedDataType": "int8" # 4x memory reduction
}
)
],
profiles=[
VectorSearchProfile(
name="optimized-profile",
algorithm_configuration_name="hnsw-config",
compression_configuration_name="scalar-quantization"
)
]
)
)
async def batch_index(self, documents: list, batch_size: int = 1000):
"""Index documents in optimized batches."""
for i in range(0, len(documents), batch_size):
batch = documents[i:i + batch_size]
await self.client.upload_documents(batch)
async def filtered_vector_search(self, query_vector: list, filters: str, top_k: int = 10):
"""Efficient filtered vector search."""
return await self.client.search(
vector_queries=[{
"vector": query_vector,
"k": top_k,
"fields": "embedding"
}],
filter=filters,
select=["id", "content"]
)
Quantization and HNSW tuning enable vector search at billion-scale with reasonable latency.