2 min read
March 2025 Recap: Advanced Patterns and Production Readiness
March 2025 focused on advanced patterns and production-readiness. Here’s what we covered.
Key Topics This Month
Advanced RAG Patterns
- Query transformation techniques
- Reranking strategies for precision
- Chunking optimization approaches
- Context window management
Knowledge Integration
- Knowledge graphs with AI
- GraphRAG implementation
- Semantic layer design
- Data mesh + AI patterns
Production Essentials
- Testing AI applications
- Guardrails and safety
- Prompt injection defense
- AI observability
Model Optimization
- Fine-tuning strategies
- Model distillation
- Prompt caching
- Function calling patterns
Multi-Modal AI
- Vision-language applications
- Audio processing
- Document understanding
- Cross-modal reasoning
Code Patterns to Remember
# March 2025 Essential Patterns
# 1. Query Expansion for better recall
async def expand_query(query: str) -> list[str]:
variations = await llm.generate_variations(query)
return [query] + variations
# 2. Cross-encoder reranking for precision
def rerank(query: str, docs: list, top_k: int = 5) -> list:
scores = cross_encoder.predict([[query, doc] for doc in docs])
return sorted(zip(docs, scores), key=lambda x: x[1], reverse=True)[:top_k]
# 3. Guardrails wrapper
async def safe_generate(prompt: str) -> str:
if not await check_input_safety(prompt):
return "I cannot process that request."
response = await llm.generate(prompt)
if not await check_output_safety(response):
return "I cannot provide that response."
return response
# 4. Quality tracking
def track_response(question: str, response: str, context: str):
metrics = evaluate_rag(question, response, context)
observability.log(metrics)
Looking Ahead to April
April kicks off Q2 with focus on:
- Build 2025 preparation
- Copilot development patterns
- Windows AI features
- On-device model deployment
Stay tuned for more practical AI content in April!