2 min read
SLM vs LLM Strategies: Choosing the Right Model Size
Small Language Models (SLMs) and Large Language Models (LLMs) each have their place. Here’s how to choose.
Decision Framework
# model_selection.py - Framework for choosing model size
from dataclasses import dataclass
from enum import Enum
from typing import Optional
class ModelSize(Enum):
SLM = "slm" # <10B parameters
LLM = "llm" # >10B parameters
HYBRID = "hybrid"
@dataclass
class TaskRequirements:
complexity: str # "simple", "moderate", "complex"
latency_ms: int
privacy_required: bool
cost_sensitivity: str # "low", "medium", "high"
accuracy_threshold: float
volume_per_day: int
class ModelSelector:
"""Select appropriate model size based on requirements."""
def recommend(self, requirements: TaskRequirements) -> dict:
"""Recommend model strategy based on requirements."""
score_slm = 0
score_llm = 0
# Complexity analysis
if requirements.complexity == "simple":
score_slm += 3
elif requirements.complexity == "moderate":
score_slm += 1
score_llm += 1
else:
score_llm += 3
# Latency requirements
if requirements.latency_ms < 100:
score_slm += 3
elif requirements.latency_ms < 500:
score_slm += 1
# Privacy requirements
if requirements.privacy_required:
score_slm += 3
# Cost sensitivity
if requirements.cost_sensitivity == "high":
score_slm += 2
elif requirements.cost_sensitivity == "low":
score_llm += 1
# Volume
if requirements.volume_per_day > 100000:
score_slm += 2
# Accuracy threshold
if requirements.accuracy_threshold > 0.95:
score_llm += 2
# Determine recommendation
if score_slm > score_llm + 2:
strategy = ModelSize.SLM
elif score_llm > score_slm + 2:
strategy = ModelSize.LLM
else:
strategy = ModelSize.HYBRID
return {
"recommendation": strategy,
"slm_score": score_slm,
"llm_score": score_llm,
"suggested_models": self.get_suggested_models(strategy, requirements)
}
def get_suggested_models(self, strategy: ModelSize, requirements: TaskRequirements) -> list:
if strategy == ModelSize.SLM:
return ["Phi-3-mini", "Phi-3-small", "Gemma-2B", "Llama-3-8B"]
elif strategy == ModelSize.LLM:
return ["GPT-4o", "Claude-3-Opus", "Gemini-Pro"]
else:
return {
"routing": "Use SLM for simple queries, LLM for complex",
"slm": ["Phi-3-mini"],
"llm": ["GPT-4o-mini"]
}
# Use case examples
# | Task | Recommended | Reasoning |
# |------|-------------|-----------|
# | Sentiment analysis | SLM | Simple classification, high volume |
# | Code generation | LLM | Complex reasoning required |
# | Entity extraction | SLM | Pattern matching, privacy |
# | Creative writing | LLM | Nuanced language generation |
# | Summarization | Hybrid | Depends on length and complexity |
The right model size depends on your specific requirements, not just capabilities.