2 min read
Edge AI Architecture: Designing for On-Device Intelligence
Edge AI requires careful architectural decisions to balance capability, latency, and resource constraints.
Edge AI Design Patterns
# edge_ai_architecture.py - Patterns for edge AI systems
from dataclasses import dataclass
from typing import Optional, Callable
from enum import Enum
import asyncio
class ProcessingTier(Enum):
DEVICE = "device" # On-device processing
EDGE = "edge" # Edge server/gateway
CLOUD = "cloud" # Cloud processing
@dataclass
class EdgeConfig:
model_path: str
max_latency_ms: int
fallback_enabled: bool
sync_interval_minutes: int
class EdgeAIOrchestrator:
"""Orchestrate AI across device, edge, and cloud."""
def __init__(self, device_model, edge_endpoint: str, cloud_endpoint: str):
self.device_model = device_model
self.edge_endpoint = edge_endpoint
self.cloud_endpoint = cloud_endpoint
async def process(self, input_data, requirements: dict) -> dict:
"""Process with intelligent tier selection."""
tier = self.select_tier(input_data, requirements)
try:
if tier == ProcessingTier.DEVICE:
return await self.process_device(input_data)
elif tier == ProcessingTier.EDGE:
return await self.process_edge(input_data)
else:
return await self.process_cloud(input_data)
except Exception as e:
# Fallback chain
return await self.fallback_process(input_data, tier, e)
def select_tier(self, input_data, requirements: dict) -> ProcessingTier:
"""Select processing tier based on requirements."""
complexity = self.estimate_complexity(input_data)
max_latency = requirements.get("max_latency_ms", float("inf"))
privacy_required = requirements.get("privacy_required", False)
if privacy_required:
return ProcessingTier.DEVICE
if complexity < 0.3 and max_latency < 50:
return ProcessingTier.DEVICE
elif complexity < 0.7 or max_latency < 200:
return ProcessingTier.EDGE
else:
return ProcessingTier.CLOUD
async def process_device(self, input_data) -> dict:
"""Process entirely on device."""
result = self.device_model.predict(input_data)
return {"tier": "device", "result": result, "latency_ms": self.last_latency}
async def sync_model(self):
"""Sync local model with cloud updates."""
# Download updated model weights
new_weights = await self.download_model_update()
if new_weights:
self.device_model.load_weights(new_weights)
class HybridInference:
"""Combine local and cloud inference for best results."""
def __init__(self, local_model, cloud_client):
self.local = local_model
self.cloud = cloud_client
async def speculative_inference(self, input_data) -> dict:
"""Use local model speculatively, verify with cloud if uncertain."""
# Get local prediction with confidence
local_result = self.local.predict_with_confidence(input_data)
if local_result["confidence"] > 0.9:
return {"result": local_result["prediction"], "source": "local"}
# Uncertain - verify with cloud
cloud_result = await self.cloud.predict(input_data)
return {"result": cloud_result, "source": "cloud"}
async def ensemble_inference(self, input_data) -> dict:
"""Combine local and cloud predictions."""
local_task = asyncio.create_task(self.local.predict_async(input_data))
cloud_task = asyncio.create_task(self.cloud.predict(input_data))
local_result, cloud_result = await asyncio.gather(
local_task, cloud_task, return_exceptions=True
)
return self.combine_results(local_result, cloud_result)
Edge AI architecture balances latency, privacy, and capability across processing tiers.