2 min read
AI Governance Frameworks: Building Responsible AI Systems
AI governance is essential for enterprise AI adoption. Here’s how to implement comprehensive governance frameworks.
AI Governance Implementation
from dataclasses import dataclass
from typing import List, Optional
from enum import Enum
class RiskLevel(Enum):
LOW = "low"
MEDIUM = "medium"
HIGH = "high"
CRITICAL = "critical"
@dataclass
class AISystemRegistration:
name: str
purpose: str
owner: str
data_sources: List[str]
model_type: str
risk_level: RiskLevel
approved: bool = False
class AIGovernanceFramework:
def __init__(self):
self.registry = AISystemRegistry()
self.policy_engine = PolicyEngine()
self.audit_log = AuditLog()
async def register_system(self, registration: AISystemRegistration) -> str:
"""Register AI system for governance tracking."""
# Validate registration
validation = await self.validate_registration(registration)
if not validation.passed:
raise GovernanceError(validation.errors)
# Assess risk
risk_assessment = await self.assess_risk(registration)
registration.risk_level = risk_assessment.level
# Apply policies based on risk
policies = self.policy_engine.get_policies(registration.risk_level)
registration.required_controls = policies
# Register system
system_id = self.registry.register(registration)
self.audit_log.log("system_registered", system_id, registration)
return system_id
async def assess_risk(self, registration: AISystemRegistration) -> RiskAssessment:
"""Assess AI system risk level."""
risk_factors = []
# Data sensitivity
if any(d in registration.data_sources for d in ["pii", "phi", "financial"]):
risk_factors.append(RiskFactor("data_sensitivity", "high"))
# Decision impact
if registration.purpose in ["hiring", "lending", "healthcare"]:
risk_factors.append(RiskFactor("decision_impact", "high"))
# Model type
if registration.model_type == "generative":
risk_factors.append(RiskFactor("model_type", "medium"))
return RiskAssessment.calculate(risk_factors)
async def enforce_policies(self, system_id: str, action: str, context: dict) -> bool:
"""Enforce governance policies for AI action."""
system = self.registry.get(system_id)
policies = self.policy_engine.get_policies(system.risk_level)
for policy in policies:
result = await policy.evaluate(action, context)
if not result.allowed:
self.audit_log.log("policy_violation", system_id, {
"policy": policy.name,
"action": action,
"reason": result.reason
})
return False
self.audit_log.log("action_allowed", system_id, {"action": action})
return True
async def generate_compliance_report(self, period: str) -> ComplianceReport:
"""Generate compliance report for AI systems."""
systems = self.registry.get_all()
report = ComplianceReport(period=period)
for system in systems:
audit_entries = self.audit_log.get_entries(system.id, period)
compliance_status = self.evaluate_compliance(system, audit_entries)
report.add_system(system, compliance_status)
return report
Comprehensive AI governance ensures responsible and compliant AI deployment.