2 min read
LLMOps: Operationalizing Large Language Models
LLMOps extends MLOps for the unique challenges of managing LLM applications in production.
LLMOps Framework
from dataclasses import dataclass
from typing import Dict, List
import mlflow
from datetime import datetime
@dataclass
class LLMDeployment:
model_id: str
version: str
endpoint: str
config: Dict
class LLMOpsManager:
def __init__(self):
self.deployments = {}
self.metrics_store = MetricsStore()
self.prompt_registry = PromptRegistry()
async def deploy_model(self, config: LLMDeployment) -> str:
"""Deploy LLM with full observability."""
# Register deployment
deployment_id = f"{config.model_id}-{config.version}-{datetime.now().isoformat()}"
# Set up monitoring
self.setup_monitoring(deployment_id, config)
# Configure scaling
self.configure_autoscaling(deployment_id, config)
# Set up A/B testing if needed
if config.config.get("ab_test"):
self.setup_ab_test(deployment_id, config)
self.deployments[deployment_id] = config
return deployment_id
def setup_monitoring(self, deployment_id: str, config: LLMDeployment):
"""Configure comprehensive LLM monitoring."""
monitors = [
LatencyMonitor(threshold_ms=1000),
QualityMonitor(min_score=0.7),
CostMonitor(budget_per_day=100),
ToxicityMonitor(threshold=0.1),
DriftMonitor(baseline=config.config.get("baseline"))
]
for monitor in monitors:
self.metrics_store.register_monitor(deployment_id, monitor)
async def track_interaction(self, deployment_id: str, interaction: Dict):
"""Track LLM interaction for analysis."""
metrics = {
"timestamp": datetime.now(),
"deployment_id": deployment_id,
"input_tokens": interaction["input_tokens"],
"output_tokens": interaction["output_tokens"],
"latency_ms": interaction["latency_ms"],
"cost_usd": self.calculate_cost(interaction),
"quality_score": await self.evaluate_quality(interaction),
"user_feedback": interaction.get("feedback")
}
self.metrics_store.record(metrics)
# Check for alerts
await self.check_alerts(deployment_id, metrics)
async def evaluate_quality(self, interaction: Dict) -> float:
"""Evaluate response quality."""
evaluator = QualityEvaluator()
return await evaluator.score(
question=interaction["prompt"],
response=interaction["response"],
context=interaction.get("context")
)
def calculate_cost(self, interaction: Dict) -> float:
"""Calculate interaction cost."""
pricing = {
"gpt-4o": {"input": 0.005, "output": 0.015},
"gpt-4o-mini": {"input": 0.00015, "output": 0.0006}
}
model = interaction["model"]
if model not in pricing:
return 0
return (
interaction["input_tokens"] / 1000 * pricing[model]["input"] +
interaction["output_tokens"] / 1000 * pricing[model]["output"]
)
async def rollback(self, deployment_id: str, reason: str):
"""Rollback to previous version."""
current = self.deployments[deployment_id]
previous = self.get_previous_version(current.model_id)
if previous:
await self.deploy_model(previous)
self.log_rollback(deployment_id, reason)
LLMOps ensures reliable, cost-effective LLM operations at scale.