2 min read
Reserved Capacity for AI: Optimizing Long-Term Costs
Reserved capacity for AI services can significantly reduce costs. Here’s when and how to use it.
Reserved Capacity Strategy
from dataclasses import dataclass
from typing import Dict, List
import numpy as np
@dataclass
class ReservationOption:
term_months: int
discount_percent: float
commitment_tpm: int # Tokens per minute
monthly_cost: float
class AIReservationPlanner:
def __init__(self):
self.usage_history = []
self.reservation_options = self.load_options()
def analyze_usage_pattern(self, days: int = 90) -> Dict:
"""Analyze usage patterns for reservation planning."""
usage = self.get_usage_data(days)
return {
"avg_daily_tokens": np.mean(usage["daily_tokens"]),
"p50_daily_tokens": np.percentile(usage["daily_tokens"], 50),
"p90_daily_tokens": np.percentile(usage["daily_tokens"], 90),
"p99_daily_tokens": np.percentile(usage["daily_tokens"], 99),
"growth_trend": self.calculate_growth_trend(usage),
"seasonality": self.detect_seasonality(usage)
}
def recommend_reservation(self, analysis: Dict, risk_tolerance: str = "medium") -> Dict:
"""Recommend optimal reservation strategy."""
# Determine baseline commitment level
if risk_tolerance == "low":
baseline = analysis["p50_daily_tokens"]
elif risk_tolerance == "medium":
baseline = analysis["avg_daily_tokens"]
else:
baseline = analysis["p90_daily_tokens"]
# Account for growth
projected_baseline = baseline * (1 + analysis["growth_trend"])
# Find best reservation option
best_option = None
best_savings = 0
for option in self.reservation_options:
if option.commitment_tpm <= projected_baseline:
savings = self.calculate_savings(option, projected_baseline)
if savings > best_savings:
best_savings = savings
best_option = option
return {
"recommended_commitment": projected_baseline,
"recommended_option": best_option,
"estimated_monthly_savings": best_savings,
"payback_period_months": self.calculate_payback(best_option, best_savings),
"risk_analysis": self.analyze_risk(best_option, analysis)
}
def calculate_savings(self, option: ReservationOption, usage: float) -> float:
"""Calculate monthly savings from reservation."""
# Pay-as-you-go cost
payg_cost = usage * self.payg_rate
# Reserved cost
reserved_cost = option.monthly_cost
# Overage cost (usage above commitment at PAYG rate)
overage = max(0, usage - option.commitment_tpm)
overage_cost = overage * self.payg_rate
return payg_cost - (reserved_cost + overage_cost)
def hybrid_strategy(self, analysis: Dict) -> Dict:
"""Design hybrid reserved + on-demand strategy."""
# Reserve for baseline load
baseline_commitment = analysis["p50_daily_tokens"]
# Use on-demand for variable load
variable_load = analysis["p90_daily_tokens"] - baseline_commitment
return {
"reserved": {
"commitment": baseline_commitment,
"expected_cost": self.calculate_reserved_cost(baseline_commitment)
},
"on_demand": {
"expected_usage": variable_load,
"expected_cost": variable_load * self.payg_rate
},
"total_expected_cost": self.calculate_hybrid_cost(baseline_commitment, variable_load),
"vs_pure_payg_savings": self.calculate_hybrid_savings(analysis)
}
Strategic use of reserved capacity can reduce AI costs by 30-50% for predictable workloads.