Back to Blog
2 min read

AI Documentation: Documenting AI Systems Effectively

Good documentation is essential for AI system maintainability. Here’s how to document AI systems.

AI Documentation Framework

Model Cards

# Model Card: Customer Intent Classifier

## Model Details
- **Name**: customer-intent-v2
- **Version**: 2.1.0
- **Type**: Fine-tuned GPT-4o-mini
- **Created**: 2025-05-01
- **Owner**: AI Platform Team

## Intended Use
- **Primary Use**: Classify customer support messages by intent
- **Users**: Customer Service Application
- **Out of Scope**: Legal advice, medical queries

## Training Data
- **Source**: Historical support tickets (2023-2024)
- **Size**: 100,000 labeled examples
- **Categories**: 15 intent categories
- **Preprocessing**: PII removal, deduplication

## Performance
| Metric | Value |
|--------|-------|
| Accuracy | 94.2% |
| F1 Score | 0.93 |
| Latency (p95) | 120ms |

## Limitations
- May misclassify novel intents not in training data
- Lower accuracy on multi-intent messages
- English only

## Ethical Considerations
- No demographic data used in training
- Regular bias audits conducted
- Human review for edge cases

System Documentation

class AISystemDocumentation:
    """Documentation generator for AI systems."""

    def generate_system_doc(self, system_config: Dict) -> str:
        """Generate comprehensive system documentation."""
        sections = [
            self.overview_section(system_config),
            self.architecture_section(system_config),
            self.data_flow_section(system_config),
            self.api_reference_section(system_config),
            self.configuration_section(system_config),
            self.monitoring_section(system_config),
            self.troubleshooting_section(system_config),
            self.changelog_section(system_config)
        ]

        return "\n\n".join(sections)

    def overview_section(self, config: Dict) -> str:
        return f"""
# {config['name']}

## Overview
{config['description']}

## Key Capabilities
{self.format_list(config['capabilities'])}

## Dependencies
{self.format_dependencies(config['dependencies'])}
"""

    def architecture_section(self, config: Dict) -> str:
        return f"""
## Architecture

### Components
{self.format_components(config['components'])}

### Data Flow
{self.format_data_flow(config['data_flow'])}

### Integration Points
{self.format_integrations(config['integrations'])}
"""

    def generate_prompt_doc(self, prompt_config: Dict) -> str:
        """Generate prompt documentation."""
        return f"""
# Prompt: {prompt_config['name']}

## Purpose
{prompt_config['purpose']}

## Template

{prompt_config[‘template’]}


## Variables
{self.format_variables(prompt_config['variables'])}

## Examples
{self.format_examples(prompt_config['examples'])}

## Version History
{self.format_history(prompt_config['history'])}
"""

Comprehensive documentation ensures AI systems remain maintainable and understandable.

Michael John Peña

Michael John Peña

Senior Data Engineer based in Sydney. Writing about data, cloud, and technology.