2 min read
AI Use Case Prioritization: Selecting High-Impact Projects
Not all AI use cases are equal. Here’s how to prioritize for maximum impact.
AI Use Case Prioritization Framework
from dataclasses import dataclass
from typing import List, Dict
import numpy as np
@dataclass
class AIUseCase:
name: str
description: str
business_value: float # 1-10
feasibility: float # 1-10
data_readiness: float # 1-10
strategic_alignment: float # 1-10
risk_level: float # 1-10 (higher = more risk)
estimated_cost: float
estimated_timeline_months: int
class UseCasePrioritizer:
def __init__(self, weights: Dict = None):
self.weights = weights or {
"business_value": 0.30,
"feasibility": 0.20,
"data_readiness": 0.15,
"strategic_alignment": 0.20,
"risk_adjusted": 0.15
}
def score_use_case(self, use_case: AIUseCase) -> Dict:
"""Calculate priority score for use case."""
# Risk-adjusted score (invert risk)
risk_adjusted = 10 - use_case.risk_level
scores = {
"business_value": use_case.business_value,
"feasibility": use_case.feasibility,
"data_readiness": use_case.data_readiness,
"strategic_alignment": use_case.strategic_alignment,
"risk_adjusted": risk_adjusted
}
weighted_score = sum(
scores[factor] * weight
for factor, weight in self.weights.items()
)
return {
"use_case": use_case.name,
"individual_scores": scores,
"weighted_score": weighted_score,
"quadrant": self.determine_quadrant(use_case)
}
def determine_quadrant(self, use_case: AIUseCase) -> str:
"""Determine strategic quadrant."""
high_value = use_case.business_value >= 7
high_feasibility = use_case.feasibility >= 7
if high_value and high_feasibility:
return "Quick Wins" # Do first
elif high_value and not high_feasibility:
return "Strategic Bets" # Invest carefully
elif not high_value and high_feasibility:
return "Low Hanging Fruit" # Easy but less impactful
else:
return "Deprioritize" # Consider later
def prioritize_portfolio(self, use_cases: List[AIUseCase]) -> Dict:
"""Prioritize portfolio of use cases."""
scored = [self.score_use_case(uc) for uc in use_cases]
# Sort by weighted score
ranked = sorted(scored, key=lambda x: x["weighted_score"], reverse=True)
# Group by quadrant
by_quadrant = {}
for item in scored:
quadrant = item["quadrant"]
if quadrant not in by_quadrant:
by_quadrant[quadrant] = []
by_quadrant[quadrant].append(item)
return {
"ranked_list": ranked,
"by_quadrant": by_quadrant,
"recommendations": self.generate_recommendations(ranked, by_quadrant)
}
def generate_recommendations(self, ranked: List, by_quadrant: Dict) -> List[str]:
"""Generate portfolio recommendations."""
recommendations = []
# Quick wins first
quick_wins = by_quadrant.get("Quick Wins", [])
if quick_wins:
recommendations.append(
f"Start with {len(quick_wins)} quick win(s): {', '.join(q['use_case'] for q in quick_wins[:3])}"
)
# Strategic bets need careful planning
strategic = by_quadrant.get("Strategic Bets", [])
if strategic:
recommendations.append(
f"Plan carefully for {len(strategic)} strategic bet(s) - high value but complex"
)
return recommendations
Systematic prioritization ensures AI investments focus on highest-impact opportunities.