2 min read
Vector Database Selection: Choosing the Right Solution for RAG
Selecting the right vector database is critical for RAG application performance. Each solution offers different trade-offs between scalability, cost, features, and operational complexity.
Key Selection Criteria
from dataclasses import dataclass
from typing import List, Dict
from enum import Enum
class DeploymentModel(Enum):
MANAGED_CLOUD = "managed_cloud"
SELF_HOSTED = "self_hosted"
SERVERLESS = "serverless"
@dataclass
class VectorDBRequirements:
expected_vector_count: int
dimension_size: int
queries_per_second: int
latency_p99_ms: int
metadata_filtering: bool
hybrid_search: bool
multi_tenancy: bool
deployment_preference: DeploymentModel
@dataclass
class VectorDBOption:
name: str
max_vectors: int
supported_dimensions: List[int]
hybrid_search: bool
pricing_model: str
managed_available: bool
def evaluate_options(requirements: VectorDBRequirements) -> List[Dict]:
"""Evaluate vector database options against requirements."""
options = [
VectorDBOption(
name="Azure AI Search",
max_vectors=1_000_000_000,
supported_dimensions=[1, 3072],
hybrid_search=True,
pricing_model="per_document_and_query",
managed_available=True
),
VectorDBOption(
name="Pinecone",
max_vectors=1_000_000_000,
supported_dimensions=[1, 20000],
hybrid_search=True,
pricing_model="serverless_or_pod",
managed_available=True
),
VectorDBOption(
name="Qdrant",
max_vectors=100_000_000,
supported_dimensions=[1, 65536],
hybrid_search=True,
pricing_model="self_hosted_or_cloud",
managed_available=True
),
VectorDBOption(
name="Weaviate",
max_vectors=1_000_000_000,
supported_dimensions=[1, 65536],
hybrid_search=True,
pricing_model="self_hosted_or_cloud",
managed_available=True
)
]
scored_options = []
for option in options:
score = 0
# Check vector capacity
if option.max_vectors >= requirements.expected_vector_count:
score += 30
# Check hybrid search requirement
if requirements.hybrid_search and option.hybrid_search:
score += 25
elif not requirements.hybrid_search:
score += 25
# Check managed preference
if requirements.deployment_preference == DeploymentModel.MANAGED_CLOUD:
if option.managed_available:
score += 20
scored_options.append({
"name": option.name,
"score": score,
"meets_requirements": score >= 75
})
return sorted(scored_options, key=lambda x: x["score"], reverse=True)
Performance Benchmarking
import time
import numpy as np
from typing import Callable
def benchmark_vector_db(
insert_fn: Callable,
search_fn: Callable,
vectors: np.ndarray,
queries: np.ndarray,
batch_size: int = 100
) -> Dict:
"""Benchmark vector database operations."""
results = {
"insert_times": [],
"search_times": [],
"search_recall": []
}
# Benchmark inserts
for i in range(0, len(vectors), batch_size):
batch = vectors[i:i+batch_size]
start = time.perf_counter()
insert_fn(batch)
elapsed = time.perf_counter() - start
results["insert_times"].append(elapsed / len(batch))
# Benchmark searches
for query in queries:
start = time.perf_counter()
search_results = search_fn(query, top_k=10)
elapsed = time.perf_counter() - start
results["search_times"].append(elapsed * 1000) # Convert to ms
return {
"avg_insert_ms": np.mean(results["insert_times"]) * 1000,
"p50_search_ms": np.percentile(results["search_times"], 50),
"p99_search_ms": np.percentile(results["search_times"], 99),
"queries_per_second": 1000 / np.mean(results["search_times"])
}
The best vector database depends on your specific requirements. Azure AI Search excels for hybrid search with integrated semantic ranking. Pinecone offers the simplest serverless experience. Qdrant and Weaviate provide flexibility for self-hosted deployments.