2 min read
Data Mesh Architecture: Enabling AI at Scale with Decentralized Data
Data Mesh principles enable organizations to scale AI initiatives by treating data as products owned by domain teams. This decentralized approach addresses the bottlenecks of centralized data platforms.
Defining Data Products for AI
Create self-describing data products:
from dataclasses import dataclass, field
from typing import List, Dict, Optional
from datetime import datetime
import json
@dataclass
class DataProductMetadata:
name: str
domain: str
owner: str
description: str
schema_version: str
quality_sla: Dict[str, float]
tags: List[str] = field(default_factory=list)
ai_ready: bool = False
embedding_available: bool = False
@dataclass
class DataProduct:
metadata: DataProductMetadata
schema: Dict
access_patterns: List[str]
refresh_frequency: str
lineage: List[str]
def to_catalog_entry(self) -> dict:
"""Convert to data catalog format."""
return {
"name": self.metadata.name,
"domain": self.metadata.domain,
"owner": self.metadata.owner,
"description": self.metadata.description,
"schema": self.schema,
"quality_metrics": self.metadata.quality_sla,
"ai_features": {
"ai_ready": self.metadata.ai_ready,
"embedding_available": self.metadata.embedding_available
},
"access": self.access_patterns,
"lineage": self.lineage,
"last_updated": datetime.utcnow().isoformat()
}
class DataProductRegistry:
def __init__(self, storage_client):
self.storage = storage_client
self.products: Dict[str, DataProduct] = {}
def register_product(self, product: DataProduct) -> str:
"""Register a new data product."""
product_id = f"{product.metadata.domain}/{product.metadata.name}"
self.products[product_id] = product
# Store in catalog
self.storage.save(f"catalog/{product_id}.json", product.to_catalog_entry())
return product_id
def discover_ai_ready_products(self, domain: Optional[str] = None) -> List[DataProduct]:
"""Find data products ready for AI consumption."""
products = self.products.values()
if domain:
products = [p for p in products if p.metadata.domain == domain]
return [p for p in products if p.metadata.ai_ready]
Building Domain-Specific AI Services
Create AI services that consume domain data products:
class DomainAIService:
def __init__(self, domain: str, registry: DataProductRegistry, ai_client):
self.domain = domain
self.registry = registry
self.ai_client = ai_client
def build_domain_context(self) -> str:
"""Build context from domain data products."""
products = self.registry.discover_ai_ready_products(self.domain)
context_parts = []
for product in products:
context_parts.append(f"Data Source: {product.metadata.name}")
context_parts.append(f"Description: {product.metadata.description}")
context_parts.append(f"Schema: {json.dumps(product.schema, indent=2)}")
context_parts.append("---")
return "\n".join(context_parts)
def answer_domain_question(self, question: str) -> dict:
"""Answer questions using domain data products."""
context = self.build_domain_context()
response = self.ai_client.chat.completions.create(
model="gpt-4",
messages=[
{"role": "system", "content": f"You are an expert in the {self.domain} domain. Use the following data product information to answer questions:\n\n{context}"},
{"role": "user", "content": question}
]
)
return {
"answer": response.choices[0].message.content,
"domain": self.domain,
"data_products_used": [p.metadata.name for p in self.registry.discover_ai_ready_products(self.domain)]
}
Federated Governance
Implement federated governance that balances domain autonomy with enterprise standards for AI-ready data products.