2 min read
Ignite 2025 Day 2: Microsoft Fabric Innovations and Real-Time Intelligence
Day 2 of Ignite 2025 focused on Microsoft Fabric with exciting announcements around real-time intelligence, enhanced Copilot capabilities, and new data integration features.
Real-Time Intelligence GA
Real-Time Intelligence moved to general availability with significant enhancements:
// New real-time dashboard capabilities
.create-or-alter function CustomerActivityStream()
{
CustomerEvents
| where Timestamp > ago(5m)
| summarize
ActiveUsers = dcount(UserId),
TotalActions = count(),
ErrorRate = countif(Status == "Error") * 100.0 / count()
by bin(Timestamp, 1m), Region
| extend AlertLevel = case(
ErrorRate > 5, "Critical",
ErrorRate > 2, "Warning",
"Normal"
)
}
// Automated anomaly detection with ML
.create materialized-view AnomalyDetection on table SalesTransactions
{
SalesTransactions
| summarize Amount = sum(Amount) by bin(Timestamp, 1h), Category
| extend (AnomalyScore, AnomalyFlag) = series_decompose_anomalies(Amount, 1.5)
| where AnomalyFlag == 1
}
// Real-time alerting integration
.create function AlertOnAnomaly()
{
AnomalyDetection
| where AnomalyFlag == 1 and AnomalyScore > 3
| extend AlertPayload = bag_pack(
"category", Category,
"amount", Amount,
"score", AnomalyScore,
"timestamp", Timestamp
)
| invoke send_to_eventhub("alerts-hub", AlertPayload)
}
Copilot for Fabric Enhancements
Copilot now supports more sophisticated data engineering tasks:
# Copilot-generated pipeline with human review
# Prompt: "Create a pipeline to ingest customer data from Salesforce,
# clean it, and load into the customer_360 lakehouse table"
# Generated by Copilot for Fabric:
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, when, trim, lower, regexp_replace
def ingest_salesforce_customers():
"""
Pipeline to ingest and clean customer data from Salesforce.
Generated by Copilot, reviewed by data engineering team.
"""
# Read from Salesforce connector
raw_df = spark.read \
.format("salesforce") \
.option("sfObject", "Contact") \
.option("sfQuery", "SELECT Id, Name, Email, Phone, AccountId FROM Contact") \
.load()
# Apply data quality rules
cleaned_df = raw_df \
.withColumn("email", lower(trim(col("Email")))) \
.withColumn("phone", regexp_replace(col("Phone"), "[^0-9]", "")) \
.withColumn("name", trim(col("Name"))) \
.filter(col("email").isNotNull()) \
.dropDuplicates(["email"])
# Add metadata
enriched_df = cleaned_df \
.withColumn("source_system", lit("salesforce")) \
.withColumn("ingestion_timestamp", current_timestamp()) \
.withColumn("data_quality_score",
when(col("phone").isNotNull(), 1.0).otherwise(0.8))
# Write to lakehouse
enriched_df.write \
.format("delta") \
.mode("merge") \
.option("mergeSchema", "true") \
.saveAsTable("customer_360.customers")
return enriched_df.count()
Cross-Cloud Data Shortcuts
New shortcut capabilities enable seamless multi-cloud data access:
- AWS S3 with IAM role federation
- Google Cloud Storage with service account integration
- Azure Data Lake cross-tenant access
These Fabric updates demonstrate Microsoft’s commitment to building a truly unified data platform that handles real-time and batch workloads while simplifying development through AI assistance.