6 min read
Preparing for GPT-4: What We Know So Far
Tomorrow OpenAI is expected to announce GPT-4. The AI community is buzzing with speculation. Based on what we know from leaks, rumors, and OpenAI’s research trajectory, here’s how to prepare your applications and infrastructure.
What We Expect
Larger Context Windows
GPT-3.5 maxes out at 4K tokens (~3000 words). GPT-4 is rumored to support 32K tokens (~25,000 words). This changes everything for:
- Document analysis: Process entire reports, contracts, codebases
- Long conversations: Maintain context across extended sessions
- Complex reasoning: More room for chain-of-thought prompting
Improved Reasoning
GPT-4 should score higher on standardized tests and reasoning benchmarks. Better at:
- Multi-step problems
- Mathematical reasoning
- Code generation and debugging
- Nuanced analysis
Potential Multimodal Capabilities
There’s speculation about image understanding. If true, this enables:
- Analyzing charts and diagrams
- Processing screenshots
- Understanding visual content
Preparing Your Applications
1. Design for Longer Context
class ContextManager:
"""Manage context for variable token limits."""
def __init__(self, model_limits: dict):
self.limits = model_limits
def prepare_context(
self,
messages: list,
model: str,
max_response_tokens: int = 1000
) -> list:
"""Prepare context within model limits."""
limit = self.limits.get(model, 4096)
available = limit - max_response_tokens
# Estimate tokens (rough: 4 chars per token)
total_tokens = sum(len(m["content"]) // 4 for m in messages)
if total_tokens <= available:
return messages
# Truncate from the middle, keeping system and recent messages
system_messages = [m for m in messages if m["role"] == "system"]
other_messages = [m for m in messages if m["role"] != "system"]
# Keep recent messages
truncated = system_messages + other_messages[-10:]
return truncated
# Prepare for GPT-4 limits
context_manager = ContextManager({
"gpt-35-turbo": 4096,
"gpt-4": 8192,
"gpt-4-32k": 32768, # Expected
})
2. Build Model-Agnostic Interfaces
from abc import ABC, abstractmethod
from dataclasses import dataclass
@dataclass
class CompletionResult:
content: str
model: str
tokens_used: int
finish_reason: str
class AIProvider(ABC):
@abstractmethod
async def complete(self, messages: list, **kwargs) -> CompletionResult:
pass
class AzureOpenAIProvider(AIProvider):
def __init__(self, deployments: dict):
self.deployments = deployments # {"gpt35": "deploy-name", "gpt4": "deploy-name"}
async def complete(
self,
messages: list,
model: str = "gpt35",
**kwargs
) -> CompletionResult:
deployment = self.deployments.get(model, self.deployments["gpt35"])
response = await openai.ChatCompletion.acreate(
engine=deployment,
messages=messages,
**kwargs
)
return CompletionResult(
content=response.choices[0].message.content,
model=model,
tokens_used=response.usage.total_tokens,
finish_reason=response.choices[0].finish_reason
)
# Easy to switch models
provider = AzureOpenAIProvider({
"gpt35": "gpt-35-turbo",
"gpt4": "gpt-4", # Add when available
})
# Application code doesn't change
result = await provider.complete(messages, model="gpt4")
3. Implement Model Selection Logic
class ModelSelector:
"""Select appropriate model based on task requirements."""
def __init__(self):
self.model_capabilities = {
"gpt-35-turbo": {
"context": 4096,
"cost_per_1k": 0.002,
"speed": "fast",
"reasoning": "moderate"
},
"gpt-4": {
"context": 8192,
"cost_per_1k": 0.03,
"speed": "slow",
"reasoning": "excellent"
},
"gpt-4-32k": {
"context": 32768,
"cost_per_1k": 0.06,
"speed": "slow",
"reasoning": "excellent"
}
}
def select(
self,
task_type: str,
context_length: int,
budget_priority: bool = True
) -> str:
"""Select best model for task."""
# Context-driven selection
if context_length > 8000:
return "gpt-4-32k"
if context_length > 4000:
return "gpt-4"
# Task-driven selection
complex_tasks = ["code_review", "analysis", "reasoning", "debugging"]
if task_type in complex_tasks and not budget_priority:
return "gpt-4"
simple_tasks = ["classification", "extraction", "summarization"]
if task_type in simple_tasks:
return "gpt-35-turbo"
# Default
return "gpt-35-turbo" if budget_priority else "gpt-4"
4. Prepare for Multimodal Input
from dataclasses import dataclass
from typing import Union
import base64
@dataclass
class TextContent:
text: str
@dataclass
class ImageContent:
url: str = None
base64_data: str = None
@classmethod
def from_file(cls, path: str) -> "ImageContent":
with open(path, "rb") as f:
data = base64.b64encode(f.read()).decode()
return cls(base64_data=data)
Content = Union[TextContent, ImageContent]
class MultimodalMessage:
"""Message that can contain text and images."""
def __init__(self, role: str):
self.role = role
self.content: list[Content] = []
def add_text(self, text: str) -> "MultimodalMessage":
self.content.append(TextContent(text))
return self
def add_image(self, image: ImageContent) -> "MultimodalMessage":
self.content.append(image)
return self
def to_api_format(self, supports_vision: bool = False) -> dict:
"""Convert to API format."""
if not supports_vision or all(isinstance(c, TextContent) for c in self.content):
# Text-only format
text = " ".join(c.text for c in self.content if isinstance(c, TextContent))
return {"role": self.role, "content": text}
# Multimodal format (expected for GPT-4V)
content = []
for c in self.content:
if isinstance(c, TextContent):
content.append({"type": "text", "text": c.text})
elif isinstance(c, ImageContent):
if c.url:
content.append({"type": "image_url", "image_url": {"url": c.url}})
elif c.base64_data:
content.append({
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{c.base64_data}"}
})
return {"role": self.role, "content": content}
# Usage
message = (MultimodalMessage("user")
.add_text("What's in this architecture diagram?")
.add_image(ImageContent.from_file("architecture.png")))
# When GPT-4V is available
api_message = message.to_api_format(supports_vision=True)
5. Set Up Cost Monitoring
class CostTracker:
"""Track costs across model versions."""
PRICING = {
"gpt-35-turbo": {"input": 0.002, "output": 0.002},
"gpt-4": {"input": 0.03, "output": 0.06},
"gpt-4-32k": {"input": 0.06, "output": 0.12},
}
def __init__(self):
self.usage = {}
def record(
self,
model: str,
input_tokens: int,
output_tokens: int,
project: str = "default"
):
"""Record token usage."""
if project not in self.usage:
self.usage[project] = {}
if model not in self.usage[project]:
self.usage[project][model] = {"input": 0, "output": 0}
self.usage[project][model]["input"] += input_tokens
self.usage[project][model]["output"] += output_tokens
def get_cost(self, project: str = None) -> dict:
"""Calculate costs."""
costs = {}
projects = [project] if project else self.usage.keys()
for p in projects:
if p not in self.usage:
continue
costs[p] = {"total": 0, "by_model": {}}
for model, tokens in self.usage[p].items():
pricing = self.PRICING.get(model, {"input": 0.002, "output": 0.002})
input_cost = (tokens["input"] / 1000) * pricing["input"]
output_cost = (tokens["output"] / 1000) * pricing["output"]
model_cost = input_cost + output_cost
costs[p]["by_model"][model] = {
"input_tokens": tokens["input"],
"output_tokens": tokens["output"],
"input_cost": input_cost,
"output_cost": output_cost,
"total_cost": model_cost
}
costs[p]["total"] += model_cost
return costs
def project_monthly_cost(self, project: str, days_elapsed: int) -> float:
"""Project monthly cost based on current usage."""
costs = self.get_cost(project)
if project not in costs:
return 0
daily_avg = costs[project]["total"] / max(days_elapsed, 1)
return daily_avg * 30
Infrastructure Preparation
Azure Resource Planning
# Request GPT-4 access (when available)
# Currently requires application through Azure portal
# Plan additional quotas
# GPT-4 will likely have separate TPM limits
# Consider dedicated capacity for high-volume scenarios
az cognitiveservices account create \
--name my-openai-dedicated \
--resource-group rg-ai \
--kind OpenAI \
--sku S0 \
--location eastus
# Set up monitoring
az monitor diagnostic-settings create \
--name openai-diagnostics \
--resource /subscriptions/{sub}/resourceGroups/rg-ai/providers/Microsoft.CognitiveServices/accounts/my-openai \
--logs '[{"category": "RequestResponse", "enabled": true}]' \
--workspace /subscriptions/{sub}/resourceGroups/rg-ai/providers/Microsoft.OperationalInsights/workspaces/my-workspace
What to Do Tomorrow
When GPT-4 drops:
- Review the announcement for actual capabilities
- Check Azure availability timeline
- Test with simple prompts to understand differences
- Compare quality vs cost for your use cases
- Update model selection logic based on real performance
The AI landscape is evolving rapidly. Build flexible systems that can adopt new capabilities without major rewrites.
Stay tuned for tomorrow’s deep dive once GPT-4 is officially released.