Back to Blog
7 min read

GPT-4 Enterprise Use Cases

With GPT-4’s improved reasoning and longer context, enterprise use cases that were previously impractical become viable. Here are the high-value applications I’m seeing emerge.

GPT-4’s 32K context can process entire contracts:

class ContractAnalyzer:
    """Analyze legal contracts with GPT-4."""

    def __init__(self, client):
        self.client = client

    async def full_contract_review(self, contract_text: str) -> dict:
        """Comprehensive contract analysis."""

        prompt = """Analyze this contract comprehensively.

Provide analysis in these sections:

1. **Executive Summary**: 2-3 sentence overview
2. **Key Terms**:
   - Parties involved
   - Effective dates
   - Termination conditions
   - Payment terms
3. **Obligations**:
   - Your obligations (as the signing party)
   - Counterparty obligations
4. **Risk Assessment**:
   - High risk clauses (indemnification, liability)
   - Unusual or non-standard terms
   - Missing standard protections
5. **Recommendations**:
   - Clauses to negotiate
   - Questions to clarify
   - Suggested modifications

Contract:
{contract}"""

        response = await self.client.chat_completion(
            model="gpt-4-32k",
            messages=[
                {"role": "system", "content": "You are a corporate attorney reviewing contracts. Be thorough and flag any concerns."},
                {"role": "user", "content": prompt.format(contract=contract_text)}
            ],
            temperature=0.2
        )

        return {
            "analysis": response.content,
            "tokens_used": response.usage.total_tokens,
            "model": "gpt-4-32k"
        }

    async def compare_to_template(
        self,
        contract: str,
        template: str
    ) -> dict:
        """Compare contract against standard template."""

        prompt = """Compare this contract against our standard template.

Identify:
1. Missing clauses from our template
2. Additional clauses not in template
3. Modifications to standard language
4. Deviations in key terms (pricing, liability caps, etc.)

Standard Template:
{template}

Contract Under Review:
{contract}"""

        response = await self.client.chat_completion(
            model="gpt-4-32k",
            messages=[
                {"role": "user", "content": prompt.format(
                    template=template,
                    contract=contract
                )}
            ]
        )

        return response.content

2. Code Review and Architecture Analysis

class CodeReviewer:
    """Comprehensive code review with GPT-4."""

    async def review_pull_request(
        self,
        diff: str,
        context_files: list[str] = None
    ) -> dict:
        """Review a pull request."""

        context = ""
        if context_files:
            context = "\n\nRelated files for context:\n" + "\n---\n".join(context_files)

        prompt = f"""Review this pull request diff.

Provide feedback on:
1. **Correctness**: Logic errors, edge cases, potential bugs
2. **Security**: Vulnerabilities, injection risks, auth issues
3. **Performance**: Inefficiencies, N+1 queries, memory issues
4. **Maintainability**: Code clarity, naming, documentation
5. **Testing**: Missing test cases, edge cases to cover

For each issue, specify:
- Severity (Critical/High/Medium/Low)
- File and line number
- Description
- Suggested fix

Diff:

{diff}

{context}"""

        response = await self.client.chat_completion(
            model="gpt-4",
            messages=[
                {"role": "system", "content": "You are a senior software engineer conducting a thorough code review."},
                {"role": "user", "content": prompt}
            ],
            temperature=0.1
        )

        return self._parse_review(response.content)

    def _parse_review(self, content: str) -> dict:
        """Parse review into structured format."""
        # Implementation to extract issues, severity, etc.
        return {"raw": content, "parsed": True}

    async def analyze_architecture(
        self,
        codebase_summary: str,
        specific_concern: str = None
    ) -> dict:
        """Analyze codebase architecture."""

        prompt = f"""Analyze this codebase architecture.

{f'Specific concern to address: {specific_concern}' if specific_concern else ''}

Codebase Summary:
{codebase_summary}

Provide analysis on:
1. Overall architecture pattern (monolith, microservices, etc.)
2. Separation of concerns
3. Dependency management
4. Scalability considerations
5. Testing architecture
6. Potential improvements"""

        response = await self.client.chat_completion(
            model="gpt-4-32k",
            messages=[{"role": "user", "content": prompt}]
        )

        return response.content

3. Financial Analysis and Reporting

class FinancialAnalyzer:
    """Financial document analysis with GPT-4."""

    async def analyze_financial_statements(
        self,
        statements: str,
        period: str = "Q4 2022"
    ) -> dict:
        """Analyze financial statements."""

        prompt = f"""Analyze these financial statements for {period}.

Financial Statements:
{statements}

Provide:

1. **Key Metrics Summary**:
   - Revenue and growth rate
   - Gross margin
   - Operating margin
   - Net income
   - Cash flow from operations

2. **Trend Analysis**:
   - QoQ and YoY comparisons
   - Concerning trends
   - Positive developments

3. **Health Indicators**:
   - Liquidity ratios
   - Debt levels
   - Working capital

4. **Risk Factors**:
   - Identified concerns
   - Areas needing investigation

5. **Outlook**:
   - Based on current trends
   - Key factors to watch"""

        response = await self.client.chat_completion(
            model="gpt-4-32k",
            messages=[
                {"role": "system", "content": "You are a financial analyst. Provide thorough, accurate analysis."},
                {"role": "user", "content": prompt}
            ],
            temperature=0.2
        )

        return response.content

    async def earnings_call_summary(
        self,
        transcript: str
    ) -> dict:
        """Summarize earnings call transcript."""

        prompt = f"""Summarize this earnings call transcript.

Transcript:
{transcript}

Provide:
1. **Key Announcements**: Major news and updates
2. **Financial Highlights**: Numbers mentioned
3. **Guidance**: Forward-looking statements
4. **Management Tone**: Optimistic/cautious/concerned
5. **Analyst Concerns**: Key questions and answers
6. **Red Flags**: Any concerning statements"""

        response = await self.client.chat_completion(
            model="gpt-4-32k",
            messages=[{"role": "user", "content": prompt}]
        )

        return response.content

4. Customer Support Escalation Analysis

class SupportAnalyzer:
    """Analyze support escalations with GPT-4."""

    async def analyze_escalation(
        self,
        ticket_history: str,
        customer_profile: str = None
    ) -> dict:
        """Analyze support escalation for resolution."""

        context = f"\nCustomer Profile:\n{customer_profile}" if customer_profile else ""

        prompt = f"""Analyze this support escalation.

Ticket History:
{ticket_history}
{context}

Provide:

1. **Issue Summary**: What is the core problem?

2. **Root Cause Analysis**:
   - Technical cause (if identifiable)
   - Process failure (if applicable)
   - Communication gaps

3. **Customer Sentiment**:
   - Frustration level (1-10)
   - Key pain points
   - Expectations

4. **Resolution Recommendation**:
   - Immediate actions
   - Long-term fix
   - Compensation recommendation (if warranted)

5. **Prevention**:
   - How to prevent similar escalations
   - Process improvements needed"""

        response = await self.client.chat_completion(
            model="gpt-4",
            messages=[
                {"role": "system", "content": "You are a customer success manager analyzing escalations to find optimal resolutions."},
                {"role": "user", "content": prompt}
            ]
        )

        return response.content

    async def batch_analyze_tickets(
        self,
        tickets: list[dict]
    ) -> dict:
        """Analyze patterns across multiple tickets."""

        tickets_text = "\n---\n".join([
            f"Ticket {t['id']}: {t['summary']}\nCategory: {t['category']}\nResolution: {t['resolution']}"
            for t in tickets
        ])

        prompt = f"""Analyze these support tickets for patterns.

Tickets:
{tickets_text}

Identify:
1. Common issues and their frequency
2. Categories needing attention
3. Resolution effectiveness
4. Systemic problems
5. Recommendations for improvement"""

        response = await self.client.chat_completion(
            model="gpt-4-32k",
            messages=[{"role": "user", "content": prompt}]
        )

        return response.content

5. Technical Documentation Generation

class DocumentationGenerator:
    """Generate technical documentation with GPT-4."""

    async def generate_api_docs(
        self,
        openapi_spec: str
    ) -> str:
        """Generate human-readable API documentation."""

        prompt = f"""Generate comprehensive API documentation from this OpenAPI spec.

OpenAPI Spec:
{openapi_spec}

Generate documentation including:
1. Overview and authentication
2. Each endpoint with:
   - Description
   - Parameters
   - Request examples
   - Response examples
   - Error codes
3. Common use cases
4. Rate limits and best practices

Format in Markdown."""

        response = await self.client.chat_completion(
            model="gpt-4-32k",
            messages=[{"role": "user", "content": prompt}]
        )

        return response.content

    async def generate_runbook(
        self,
        system_description: str,
        incident_types: list[str]
    ) -> str:
        """Generate operational runbook."""

        incidents = "\n".join(f"- {i}" for i in incident_types)

        prompt = f"""Generate an operational runbook for this system.

System Description:
{system_description}

Incident Types to Cover:
{incidents}

For each incident type, include:
1. Detection criteria
2. Impact assessment steps
3. Step-by-step resolution
4. Escalation criteria
5. Post-incident actions

Format in Markdown with clear sections."""

        response = await self.client.chat_completion(
            model="gpt-4",
            messages=[{"role": "user", "content": prompt}]
        )

        return response.content

ROI Considerations

Use CaseManual TimeGPT-4 TimeCost Savings
Contract review4 hours10 min~$400/contract
Code review1 hour5 min~$100/PR
Financial analysis2 hours15 min~$200/report
Support escalation30 min2 min~$50/ticket

GPT-4’s cost (~$0.10 per analysis) is negligible compared to time savings.

Implementation Strategy

  1. Start with high-value, low-risk: Documentation, analysis
  2. Add human review: AI assists, humans verify
  3. Measure quality: Track accuracy, corrections needed
  4. Expand gradually: Build confidence before automation

GPT-4 enables automation of knowledge work that was previously too complex for AI. The enterprise applications are substantial.

Michael John Pena

Michael John Pena

Senior Data Engineer based in Sydney. Writing about data, cloud, and technology.