5 min read
AI Governance Frameworks: Building Trust at Scale
AI Governance Frameworks: Building Trust at Scale
As AI deployments scale, governance becomes critical. A robust framework ensures AI is used responsibly, ethically, and in compliance with regulations.
The AI Governance Framework
from dataclasses import dataclass, field
from typing import List, Dict, Optional
from enum import Enum
from datetime import datetime
class RiskLevel(Enum):
LOW = "Low"
MEDIUM = "Medium"
HIGH = "High"
CRITICAL = "Critical"
class GovernanceDomain(Enum):
STRATEGY = "Strategy & Oversight"
RISK = "Risk Management"
DATA = "Data Governance"
MODEL = "Model Governance"
ETHICS = "Ethics & Responsibility"
OPERATIONS = "Operations & Monitoring"
COMPLIANCE = "Compliance"
@dataclass
class GovernancePolicy:
domain: GovernanceDomain
policy_name: str
description: str
requirements: List[str]
owner: str
review_frequency: str
@dataclass
class AIGovernanceFramework:
organization: str
version: str
policies: List[GovernancePolicy] = field(default_factory=list)
risk_matrix: Dict = field(default_factory=dict)
def add_policy(self, policy: GovernancePolicy):
self.policies.append(policy)
def get_policies_by_domain(self, domain: GovernanceDomain) -> List[GovernancePolicy]:
return [p for p in self.policies if p.domain == domain]
# Create framework
framework = AIGovernanceFramework(
organization="Enterprise Corp",
version="1.0"
)
# Add core policies
framework.add_policy(GovernancePolicy(
domain=GovernanceDomain.STRATEGY,
policy_name="AI Use Case Approval",
description="All AI use cases must be approved before development",
requirements=[
"Business case documentation",
"Risk assessment completion",
"Executive sponsor identified",
"Success metrics defined",
"Budget approved"
],
owner="AI Steering Committee",
review_frequency="Annual"
))
framework.add_policy(GovernancePolicy(
domain=GovernanceDomain.RISK,
policy_name="AI Risk Assessment",
description="Mandatory risk assessment for all AI systems",
requirements=[
"Impact assessment completed",
"Data sensitivity classification",
"Bias evaluation",
"Security review",
"Privacy impact assessment"
],
owner="Risk Management",
review_frequency="Per deployment"
))
Use Case Approval Process
@dataclass
class AIUseCaseProposal:
title: str
description: str
business_unit: str
sponsor: str
proposed_date: datetime
estimated_investment: float
expected_benefits: List[str]
data_requirements: List[str]
risk_factors: List[str]
class UseCaseApprovalWorkflow:
STAGES = [
"Submitted",
"Initial Review",
"Risk Assessment",
"Technical Review",
"Ethics Review",
"Final Approval",
"Approved",
"Rejected"
]
def __init__(self):
self.proposals: Dict[str, Dict] = {}
def submit_proposal(self, proposal: AIUseCaseProposal) -> str:
"""Submit a new use case proposal."""
import uuid
proposal_id = str(uuid.uuid4())[:8]
self.proposals[proposal_id] = {
"proposal": proposal,
"stage": "Submitted",
"reviews": [],
"submitted_at": datetime.now(),
"decision": None
}
return proposal_id
def conduct_initial_review(self, proposal_id: str, reviewer: str) -> Dict:
"""Initial screening review."""
checks = {
"business_alignment": {
"question": "Does this align with strategic priorities?",
"required": True
},
"feasibility": {
"question": "Is this technically feasible?",
"required": True
},
"resource_availability": {
"question": "Are resources available?",
"required": True
},
"similar_initiatives": {
"question": "Are there similar existing initiatives?",
"required": False
}
}
return {
"proposal_id": proposal_id,
"stage": "Initial Review",
"reviewer": reviewer,
"checks": checks
}
def conduct_risk_assessment(self, proposal_id: str) -> Dict:
"""Comprehensive risk assessment."""
risk_categories = {
"operational_risk": {
"factors": [
"System availability requirements",
"Human oversight needs",
"Fallback procedures"
],
"weight": 0.25
},
"data_risk": {
"factors": [
"Data sensitivity level",
"Data quality concerns",
"Data privacy implications"
],
"weight": 0.25
},
"model_risk": {
"factors": [
"Accuracy requirements",
"Bias potential",
"Explainability needs"
],
"weight": 0.25
},
"reputational_risk": {
"factors": [
"Customer-facing?",
"Decision impact on people",
"Public visibility"
],
"weight": 0.25
}
}
return {
"proposal_id": proposal_id,
"risk_categories": risk_categories,
"assessment_template": self._generate_assessment_template(risk_categories)
}
def _generate_assessment_template(self, categories: Dict) -> str:
template = "# AI Risk Assessment\n\n"
for category, details in categories.items():
template += f"## {category.replace('_', ' ').title()}\n\n"
for factor in details["factors"]:
template += f"- [ ] {factor}: [Score 1-5] [Comments]\n"
template += "\n"
return template
Model Governance
@dataclass
class ModelRegistry:
"""Central registry for all AI models."""
models: Dict[str, Dict] = field(default_factory=dict)
def register_model(
self,
model_id: str,
model_name: str,
model_type: str,
version: str,
owner: str,
use_cases: List[str],
risk_level: RiskLevel,
documentation_url: str
):
"""Register a model in the governance registry."""
self.models[model_id] = {
"name": model_name,
"type": model_type,
"version": version,
"owner": owner,
"use_cases": use_cases,
"risk_level": risk_level,
"documentation": documentation_url,
"registered_at": datetime.now(),
"status": "Active",
"reviews": [],
"incidents": []
}
def schedule_review(self, model_id: str, review_type: str, due_date: datetime):
"""Schedule a model review."""
if model_id in self.models:
self.models[model_id]["reviews"].append({
"type": review_type,
"due_date": due_date,
"status": "Scheduled"
})
def report_incident(self, model_id: str, incident_description: str, severity: str):
"""Report an incident related to a model."""
if model_id in self.models:
self.models[model_id]["incidents"].append({
"description": incident_description,
"severity": severity,
"reported_at": datetime.now(),
"status": "Open"
})
# Example usage
registry = ModelRegistry()
registry.register_model(
model_id="gpt4-customer-service",
model_name="Customer Service Assistant",
model_type="LLM (GPT-4)",
version="1.2.0",
owner="Customer Experience Team",
use_cases=["Customer inquiry response", "FAQ generation"],
risk_level=RiskLevel.MEDIUM,
documentation_url="https://docs.company.com/ai/customer-service"
)
Monitoring and Compliance
class GovernanceMonitoring:
"""Monitor AI systems for governance compliance."""
def __init__(self, framework: AIGovernanceFramework):
self.framework = framework
self.alerts: List[Dict] = []
def check_compliance(self, model_id: str, model_data: Dict) -> Dict:
"""Check a model against governance requirements."""
compliance_results = {
"model_id": model_id,
"checked_at": datetime.now(),
"findings": []
}
# Check documentation
if not model_data.get("documentation"):
compliance_results["findings"].append({
"category": "Documentation",
"severity": "Medium",
"finding": "Model documentation missing"
})
# Check review status
reviews = model_data.get("reviews", [])
overdue_reviews = [r for r in reviews if r["due_date"] < datetime.now() and r["status"] == "Scheduled"]
if overdue_reviews:
compliance_results["findings"].append({
"category": "Review",
"severity": "High",
"finding": f"{len(overdue_reviews)} overdue reviews"
})
# Check incident management
open_incidents = [i for i in model_data.get("incidents", []) if i["status"] == "Open"]
if open_incidents:
compliance_results["findings"].append({
"category": "Incidents",
"severity": "High",
"finding": f"{len(open_incidents)} unresolved incidents"
})
compliance_results["compliant"] = len(compliance_results["findings"]) == 0
return compliance_results
def generate_governance_report(self, registry: ModelRegistry) -> str:
"""Generate organization-wide governance report."""
report = "# AI Governance Report\n\n"
report += f"Generated: {datetime.now().strftime('%Y-%m-%d')}\n\n"
report += "## Model Inventory\n\n"
report += f"Total Models: {len(registry.models)}\n\n"
# By risk level
risk_counts = {}
for model in registry.models.values():
level = model["risk_level"].value
risk_counts[level] = risk_counts.get(level, 0) + 1
report += "### By Risk Level\n"
for level, count in risk_counts.items():
report += f"- {level}: {count}\n"
# Compliance summary
report += "\n## Compliance Summary\n\n"
compliant = sum(1 for m in registry.models.values() if not m.get("incidents"))
report += f"Models in Compliance: {compliant}/{len(registry.models)}\n"
return report
Tomorrow, we’ll explore AI risk management in depth!