5 min read
AI Risk Management: Identifying and Mitigating AI Risks
AI Risk Management: Identifying and Mitigating AI Risks
AI systems introduce unique risks that traditional IT risk frameworks don’t fully address. Let’s explore a comprehensive approach to AI risk management.
AI Risk Taxonomy
from dataclasses import dataclass
from typing import List, Dict, Optional
from enum import Enum
class RiskCategory(Enum):
MODEL = "Model Risk"
DATA = "Data Risk"
OPERATIONAL = "Operational Risk"
SECURITY = "Security Risk"
COMPLIANCE = "Compliance Risk"
REPUTATIONAL = "Reputational Risk"
ETHICAL = "Ethical Risk"
@dataclass
class AIRisk:
category: RiskCategory
name: str
description: str
likelihood: int # 1-5
impact: int # 1-5
mitigations: List[str]
detection_methods: List[str]
@property
def risk_score(self) -> int:
return self.likelihood * self.impact
@property
def risk_level(self) -> str:
score = self.risk_score
if score >= 20:
return "Critical"
elif score >= 12:
return "High"
elif score >= 6:
return "Medium"
return "Low"
ai_risk_catalog = {
RiskCategory.MODEL: [
AIRisk(
category=RiskCategory.MODEL,
name="Hallucination",
description="Model generates false or misleading information",
likelihood=4,
impact=4,
mitigations=[
"Implement fact-checking pipelines",
"Use RAG to ground responses",
"Add confidence scoring",
"Human review for critical outputs"
],
detection_methods=[
"Automated fact verification",
"User feedback analysis",
"Output consistency checks"
]
),
AIRisk(
category=RiskCategory.MODEL,
name="Bias",
description="Model exhibits unfair bias against certain groups",
likelihood=3,
impact=5,
mitigations=[
"Regular bias audits",
"Diverse training data",
"Fairness constraints",
"Representative test sets"
],
detection_methods=[
"Demographic parity testing",
"Equal opportunity metrics",
"Disparate impact analysis"
]
),
AIRisk(
category=RiskCategory.MODEL,
name="Model Drift",
description="Model performance degrades over time",
likelihood=4,
impact=3,
mitigations=[
"Continuous monitoring",
"Automated retraining pipelines",
"Performance baselines",
"Regular model updates"
],
detection_methods=[
"Statistical drift detection",
"Performance metric tracking",
"Input distribution monitoring"
]
)
],
RiskCategory.SECURITY: [
AIRisk(
category=RiskCategory.SECURITY,
name="Prompt Injection",
description="Malicious inputs manipulate model behavior",
likelihood=4,
impact=4,
mitigations=[
"Input sanitization",
"Prompt hardening",
"Output filtering",
"Rate limiting"
],
detection_methods=[
"Pattern matching for injection attempts",
"Anomaly detection on inputs",
"Output behavior analysis"
]
),
AIRisk(
category=RiskCategory.SECURITY,
name="Data Leakage",
description="Model reveals sensitive training data or context",
likelihood=3,
impact=5,
mitigations=[
"Output filtering for PII",
"Context isolation",
"Differential privacy",
"Response auditing"
],
detection_methods=[
"PII detection scanning",
"Training data extraction tests",
"Output pattern analysis"
]
)
],
RiskCategory.OPERATIONAL: [
AIRisk(
category=RiskCategory.OPERATIONAL,
name="Service Availability",
description="AI service becomes unavailable affecting operations",
likelihood=3,
impact=4,
mitigations=[
"Redundant deployments",
"Fallback mechanisms",
"Graceful degradation",
"SLA monitoring"
],
detection_methods=[
"Uptime monitoring",
"Health checks",
"Alert systems"
]
)
]
}
Risk Assessment Process
class AIRiskAssessment:
"""Conduct comprehensive AI risk assessments."""
def __init__(self):
self.assessments: Dict[str, Dict] = {}
def create_assessment(
self,
system_name: str,
system_description: str,
assessor: str
) -> str:
"""Create a new risk assessment."""
import uuid
assessment_id = str(uuid.uuid4())[:8]
self.assessments[assessment_id] = {
"system_name": system_name,
"description": system_description,
"assessor": assessor,
"created_at": datetime.now(),
"status": "In Progress",
"identified_risks": [],
"risk_score_total": 0
}
return assessment_id
def identify_risks(
self,
assessment_id: str,
use_case_details: Dict
) -> List[AIRisk]:
"""Identify applicable risks based on use case."""
identified = []
# Customer-facing systems have higher reputational risk
if use_case_details.get("customer_facing"):
for risk in ai_risk_catalog[RiskCategory.REPUTATIONAL]:
risk.impact = min(risk.impact + 1, 5) # Increase impact
identified.append(risk)
# Systems handling PII have higher data and compliance risk
if use_case_details.get("handles_pii"):
identified.extend(ai_risk_catalog[RiskCategory.DATA])
identified.extend(ai_risk_catalog[RiskCategory.COMPLIANCE])
# All systems have model and operational risks
identified.extend(ai_risk_catalog[RiskCategory.MODEL])
identified.extend(ai_risk_catalog[RiskCategory.OPERATIONAL])
identified.extend(ai_risk_catalog[RiskCategory.SECURITY])
self.assessments[assessment_id]["identified_risks"] = identified
return identified
def calculate_overall_risk(self, assessment_id: str) -> Dict:
"""Calculate overall risk profile."""
risks = self.assessments[assessment_id]["identified_risks"]
risk_summary = {
"total_risks": len(risks),
"by_level": {"Critical": 0, "High": 0, "Medium": 0, "Low": 0},
"by_category": {},
"top_risks": [],
"overall_score": 0
}
for risk in risks:
risk_summary["by_level"][risk.risk_level] += 1
cat = risk.category.value
if cat not in risk_summary["by_category"]:
risk_summary["by_category"][cat] = 0
risk_summary["by_category"][cat] += risk.risk_score
risk_summary["overall_score"] += risk.risk_score
# Top 5 risks
sorted_risks = sorted(risks, key=lambda r: r.risk_score, reverse=True)
risk_summary["top_risks"] = [
{"name": r.name, "score": r.risk_score, "level": r.risk_level}
for r in sorted_risks[:5]
]
self.assessments[assessment_id]["risk_summary"] = risk_summary
return risk_summary
def generate_mitigation_plan(self, assessment_id: str) -> str:
"""Generate mitigation plan for identified risks."""
risks = self.assessments[assessment_id]["identified_risks"]
high_risks = [r for r in risks if r.risk_level in ["Critical", "High"]]
plan = "# Risk Mitigation Plan\n\n"
plan += f"Assessment ID: {assessment_id}\n"
plan += f"Generated: {datetime.now().strftime('%Y-%m-%d')}\n\n"
plan += "## Priority Mitigations\n\n"
for risk in high_risks:
plan += f"### {risk.name} ({risk.risk_level})\n\n"
plan += f"**Category:** {risk.category.value}\n"
plan += f"**Risk Score:** {risk.risk_score}\n\n"
plan += "**Required Mitigations:**\n"
for mitigation in risk.mitigations:
plan += f"- [ ] {mitigation}\n"
plan += "\n**Detection Methods:**\n"
for method in risk.detection_methods:
plan += f"- {method}\n"
plan += "\n---\n\n"
return plan
Continuous Risk Monitoring
class RiskMonitor:
"""Continuous monitoring of AI risks."""
def __init__(self):
self.alerts: List[Dict] = []
self.metrics: Dict[str, List] = {}
def monitor_hallucination_rate(
self,
system_id: str,
responses: List[Dict],
threshold: float = 0.05
) -> Dict:
"""Monitor hallucination rate."""
flagged = sum(1 for r in responses if r.get("verified") == False)
rate = flagged / len(responses) if responses else 0
result = {
"system_id": system_id,
"metric": "hallucination_rate",
"value": rate,
"threshold": threshold,
"status": "Alert" if rate > threshold else "Normal"
}
if rate > threshold:
self.alerts.append({
"system_id": system_id,
"alert_type": "Hallucination Rate Exceeded",
"value": rate,
"timestamp": datetime.now()
})
return result
def monitor_bias_metrics(
self,
system_id: str,
outcomes: Dict[str, Dict],
tolerance: float = 0.1
) -> Dict:
"""Monitor for bias in outcomes."""
results = {"system_id": system_id, "groups": {}}
baseline_rate = sum(g["positive_rate"] for g in outcomes.values()) / len(outcomes)
for group, data in outcomes.items():
deviation = abs(data["positive_rate"] - baseline_rate)
results["groups"][group] = {
"positive_rate": data["positive_rate"],
"deviation_from_baseline": deviation,
"status": "Alert" if deviation > tolerance else "Normal"
}
if deviation > tolerance:
self.alerts.append({
"system_id": system_id,
"alert_type": "Potential Bias Detected",
"group": group,
"deviation": deviation,
"timestamp": datetime.now()
})
return results
def get_risk_dashboard(self) -> Dict:
"""Generate risk monitoring dashboard."""
return {
"active_alerts": len([a for a in self.alerts if a.get("resolved") != True]),
"recent_alerts": self.alerts[-10:],
"metrics_tracked": list(self.metrics.keys()),
"last_updated": datetime.now()
}
Tomorrow, we’ll explore model risk and how to manage it specifically for LLMs!