Back to Blog
2 min read

AI Video Generation: Current Tools and Techniques

AI video generation has made remarkable progress. Here’s a practical guide to current tools and techniques.

Available Tools

Runway Gen-2

# Runway API example (conceptual)
import runway

client = runway.Client(api_key="your-key")

def generate_video_runway(prompt: str, duration_seconds: int = 4) -> bytes:
    """Generate video using Runway Gen-2."""

    result = client.generate(
        prompt=prompt,
        model="gen-2",
        duration=duration_seconds,
        aspect_ratio="16:9"
    )

    return result.video_bytes

Stable Video Diffusion

from diffusers import StableVideoDiffusionPipeline
import torch

pipe = StableVideoDiffusionPipeline.from_pretrained(
    "stabilityai/stable-video-diffusion-img2vid-xt",
    torch_dtype=torch.float16
)
pipe = pipe.to("cuda")

def image_to_video(image_path: str, num_frames: int = 25) -> list:
    """Generate video from image using SVD."""

    from PIL import Image
    image = Image.open(image_path).resize((1024, 576))

    frames = pipe(
        image,
        num_frames=num_frames,
        decode_chunk_size=8
    ).frames[0]

    return frames

Prompt Engineering for Video

video_prompt_templates = {
    "cinematic": "{subject}, cinematic lighting, dolly shot, film grain, 24fps",
    "product": "{product} on white background, smooth rotation, studio lighting",
    "nature": "{scene}, golden hour, slow motion, national geographic style",
    "abstract": "{concept}, fluid motion, generative art, seamless loop"
}

def craft_video_prompt(subject: str, style: str, motion: str) -> str:
    """Craft effective video generation prompt."""

    prompt = f"{subject}, {style} style, {motion} motion"

    # Add quality modifiers
    prompt += ", high quality, detailed, smooth motion"

    return prompt

Post-Processing Pipeline

def video_post_process(frames: list, output_path: str):
    """Post-process generated video frames."""

    import cv2
    import numpy as np

    # Interpolate frames for smoother motion
    interpolated = interpolate_frames(frames, factor=2)

    # Apply color correction
    corrected = [color_correct(f) for f in interpolated]

    # Upscale if needed
    upscaled = [upscale_frame(f) for f in corrected]

    # Write video
    write_video(upscaled, output_path, fps=30)

    return output_path

Best Practices

  1. Start with strong input - Better prompts/images = better videos
  2. Keep it short - Quality drops with length
  3. Post-process - Upscaling and interpolation help
  4. Iterate quickly - Generate many, select best
  5. Combine techniques - Image gen + video gen

Conclusion

AI video generation is rapidly improving. Start with current tools, develop prompt expertise, and build workflows that can scale as technology advances.

Michael John Peña

Michael John Peña

Senior Data Engineer based in Sydney. Writing about data, cloud, and technology.