2 min read
AI Video Generation: Current Tools and Techniques
AI video generation has made remarkable progress. Here’s a practical guide to current tools and techniques.
Available Tools
Runway Gen-2
# Runway API example (conceptual)
import runway
client = runway.Client(api_key="your-key")
def generate_video_runway(prompt: str, duration_seconds: int = 4) -> bytes:
"""Generate video using Runway Gen-2."""
result = client.generate(
prompt=prompt,
model="gen-2",
duration=duration_seconds,
aspect_ratio="16:9"
)
return result.video_bytes
Stable Video Diffusion
from diffusers import StableVideoDiffusionPipeline
import torch
pipe = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid-xt",
torch_dtype=torch.float16
)
pipe = pipe.to("cuda")
def image_to_video(image_path: str, num_frames: int = 25) -> list:
"""Generate video from image using SVD."""
from PIL import Image
image = Image.open(image_path).resize((1024, 576))
frames = pipe(
image,
num_frames=num_frames,
decode_chunk_size=8
).frames[0]
return frames
Prompt Engineering for Video
video_prompt_templates = {
"cinematic": "{subject}, cinematic lighting, dolly shot, film grain, 24fps",
"product": "{product} on white background, smooth rotation, studio lighting",
"nature": "{scene}, golden hour, slow motion, national geographic style",
"abstract": "{concept}, fluid motion, generative art, seamless loop"
}
def craft_video_prompt(subject: str, style: str, motion: str) -> str:
"""Craft effective video generation prompt."""
prompt = f"{subject}, {style} style, {motion} motion"
# Add quality modifiers
prompt += ", high quality, detailed, smooth motion"
return prompt
Post-Processing Pipeline
def video_post_process(frames: list, output_path: str):
"""Post-process generated video frames."""
import cv2
import numpy as np
# Interpolate frames for smoother motion
interpolated = interpolate_frames(frames, factor=2)
# Apply color correction
corrected = [color_correct(f) for f in interpolated]
# Upscale if needed
upscaled = [upscale_frame(f) for f in corrected]
# Write video
write_video(upscaled, output_path, fps=30)
return output_path
Best Practices
- Start with strong input - Better prompts/images = better videos
- Keep it short - Quality drops with length
- Post-process - Upscaling and interpolation help
- Iterate quickly - Generate many, select best
- Combine techniques - Image gen + video gen
Conclusion
AI video generation is rapidly improving. Start with current tools, develop prompt expertise, and build workflows that can scale as technology advances.