2 min read
DALL-E 3 Patterns: Effective Image Generation for Enterprise
DALL-E 3 offers powerful image generation capabilities. Here are effective patterns for enterprise use.
Basic Generation
from openai import AzureOpenAI
client = AzureOpenAI(
azure_endpoint="https://your-resource.openai.azure.com/",
api_key="your-key",
api_version="2024-02-15-preview"
)
def generate_image(prompt: str, size: str = "1024x1024", quality: str = "standard") -> str:
"""Generate image using DALL-E 3."""
response = client.images.generate(
model="dall-e-3",
prompt=prompt,
size=size, # 1024x1024, 1792x1024, 1024x1792
quality=quality, # standard or hd
n=1
)
return response.data[0].url
Prompt Engineering
class ImagePromptBuilder:
def __init__(self):
self.components = {
"subject": "",
"style": "",
"composition": "",
"lighting": "",
"details": ""
}
def set_subject(self, subject: str) -> "ImagePromptBuilder":
self.components["subject"] = subject
return self
def set_style(self, style: str) -> "ImagePromptBuilder":
styles = {
"photorealistic": "photorealistic, high detail, 8k",
"illustration": "digital illustration, clean lines, vibrant colors",
"corporate": "professional, clean, modern corporate style",
"minimalist": "minimalist, simple, clean background"
}
self.components["style"] = styles.get(style, style)
return self
def build(self) -> str:
return ", ".join([v for v in self.components.values() if v])
# Usage
prompt = (ImagePromptBuilder()
.set_subject("Modern office building")
.set_style("photorealistic")
.build())
Batch Generation for Variations
async def generate_variations(base_prompt: str, variations: list[str], count_per: int = 3) -> list[dict]:
"""Generate multiple variations of a concept."""
results = []
for variation in variations:
full_prompt = f"{base_prompt}, {variation}"
for i in range(count_per):
url = await generate_image_async(full_prompt)
results.append({
"prompt": full_prompt,
"variation": variation,
"url": url
})
return results
# Generate product images in different styles
variations = await generate_variations(
"Smartphone on desk",
["morning light", "studio lighting", "outdoor setting"]
)
Brand Consistency
brand_style_guide = {
"colors": "using brand colors blue (#0078D4) and white",
"style": "clean, professional, Microsoft Fluent design",
"elements": "no text, simple composition, ample white space"
}
def generate_brand_image(subject: str) -> str:
"""Generate on-brand image."""
prompt = f"{subject}, {brand_style_guide['style']}, {brand_style_guide['colors']}, {brand_style_guide['elements']}"
return generate_image(prompt, quality="hd")
Best Practices
- Be specific - Detailed prompts yield better results
- Include style - Specify artistic style clearly
- Avoid text - DALL-E struggles with text in images
- Generate multiple - Select the best from variations
- Post-process - Minor edits often needed
Conclusion
DALL-E 3 enables rapid image generation for marketing, prototyping, and content creation. Develop prompt templates for consistent, on-brand results.