2 min read
Image Generation for Enterprise: Governance and Best Practices
Enterprise image generation requires governance, quality control, and clear policies.
Governance Framework
class ImageGenerationPolicy:
def __init__(self):
self.allowed_use_cases = [
"marketing_materials",
"internal_presentations",
"prototyping",
"training_content"
]
self.prohibited_content = [
"real_people_without_consent",
"competitor_logos",
"misleading_content",
"copyrighted_characters"
]
self.disclosure_required = [
"external_marketing",
"customer_facing",
"social_media"
]
def validate_request(self, request: dict) -> dict:
issues = []
if request["use_case"] not in self.allowed_use_cases:
issues.append("Use case not approved")
for prohibited in self.prohibited_content:
if prohibited in request.get("prompt", "").lower():
issues.append(f"Contains prohibited content: {prohibited}")
needs_disclosure = request["use_case"] in self.disclosure_required
return {
"approved": len(issues) == 0,
"issues": issues,
"needs_disclosure": needs_disclosure
}
Quality Control Pipeline
class ImageQualityPipeline:
def __init__(self, azure_vision_client):
self.vision = azure_vision_client
async def validate_image(self, image_url: str) -> dict:
"""Validate generated image quality and appropriateness."""
# Analyze with Azure Vision
analysis = await self.vision.analyze(
image_url,
features=["adult", "objects", "brands"]
)
checks = {
"adult_content": analysis.adult.is_adult_content == False,
"brand_safe": len(analysis.brands.list) == 0,
"quality_sufficient": True # Add quality checks
}
return {
"passed": all(checks.values()),
"checks": checks,
"analysis": analysis
}
Metadata and Audit Trail
from dataclasses import dataclass
from datetime import datetime
@dataclass
class GeneratedImage:
id: str
prompt: str
image_url: str
generated_at: datetime
generated_by: str
use_case: str
approved: bool
disclosure_applied: bool
def log_generation(image: GeneratedImage):
"""Log image generation for audit trail."""
# Store in audit database
audit_db.insert(image.__dict__)
Disclosure Standards
def apply_disclosure(image_path: str, output_path: str):
"""Apply AI disclosure to generated image."""
from PIL import Image, ImageDraw, ImageFont
img = Image.open(image_path)
# Add disclosure text
draw = ImageDraw.Draw(img)
disclosure = "AI-Generated Image"
draw.text((10, img.height - 30), disclosure, fill=(128, 128, 128))
img.save(output_path)
return output_path
Best Practices
- Define clear policies - What’s allowed, what’s not
- Implement review - Human approval for external use
- Track everything - Full audit trail
- Disclose appropriately - Transparent about AI use
- Train users - Educate on responsible use
Conclusion
Enterprise image generation success requires balancing creativity with governance. Build policies, implement controls, and maintain transparency.