Back to Blog
2 min read

Image Generation for Enterprise: Governance and Best Practices

Enterprise image generation requires governance, quality control, and clear policies.

Governance Framework

class ImageGenerationPolicy:
    def __init__(self):
        self.allowed_use_cases = [
            "marketing_materials",
            "internal_presentations",
            "prototyping",
            "training_content"
        ]

        self.prohibited_content = [
            "real_people_without_consent",
            "competitor_logos",
            "misleading_content",
            "copyrighted_characters"
        ]

        self.disclosure_required = [
            "external_marketing",
            "customer_facing",
            "social_media"
        ]

    def validate_request(self, request: dict) -> dict:
        issues = []

        if request["use_case"] not in self.allowed_use_cases:
            issues.append("Use case not approved")

        for prohibited in self.prohibited_content:
            if prohibited in request.get("prompt", "").lower():
                issues.append(f"Contains prohibited content: {prohibited}")

        needs_disclosure = request["use_case"] in self.disclosure_required

        return {
            "approved": len(issues) == 0,
            "issues": issues,
            "needs_disclosure": needs_disclosure
        }

Quality Control Pipeline

class ImageQualityPipeline:
    def __init__(self, azure_vision_client):
        self.vision = azure_vision_client

    async def validate_image(self, image_url: str) -> dict:
        """Validate generated image quality and appropriateness."""

        # Analyze with Azure Vision
        analysis = await self.vision.analyze(
            image_url,
            features=["adult", "objects", "brands"]
        )

        checks = {
            "adult_content": analysis.adult.is_adult_content == False,
            "brand_safe": len(analysis.brands.list) == 0,
            "quality_sufficient": True  # Add quality checks
        }

        return {
            "passed": all(checks.values()),
            "checks": checks,
            "analysis": analysis
        }

Metadata and Audit Trail

from dataclasses import dataclass
from datetime import datetime

@dataclass
class GeneratedImage:
    id: str
    prompt: str
    image_url: str
    generated_at: datetime
    generated_by: str
    use_case: str
    approved: bool
    disclosure_applied: bool

def log_generation(image: GeneratedImage):
    """Log image generation for audit trail."""
    # Store in audit database
    audit_db.insert(image.__dict__)

Disclosure Standards

def apply_disclosure(image_path: str, output_path: str):
    """Apply AI disclosure to generated image."""

    from PIL import Image, ImageDraw, ImageFont

    img = Image.open(image_path)

    # Add disclosure text
    draw = ImageDraw.Draw(img)
    disclosure = "AI-Generated Image"
    draw.text((10, img.height - 30), disclosure, fill=(128, 128, 128))

    img.save(output_path)

    return output_path

Best Practices

  1. Define clear policies - What’s allowed, what’s not
  2. Implement review - Human approval for external use
  3. Track everything - Full audit trail
  4. Disclose appropriately - Transparent about AI use
  5. Train users - Educate on responsible use

Conclusion

Enterprise image generation success requires balancing creativity with governance. Build policies, implement controls, and maintain transparency.

Michael John Peña

Michael John Peña

Senior Data Engineer based in Sydney. Writing about data, cloud, and technology.