Back to Blog
4 min read

Meta Llama 2 70B on Azure: Open Source Power

Meta Llama 2 70B on Azure: Open Source Power

Meta’s Llama 2 70B represents the state of the art in open-source large language models. Available on Azure AI, it offers a compelling alternative to proprietary models for enterprises with specific requirements.

Why Llama 2 70B?

  • Open weights: Full transparency and customization potential
  • No API costs: Pay only for compute
  • Fine-tuning friendly: Customize for your domain
  • Strong performance: Competitive with proprietary models

Deployment Options on Azure

Managed Compute Deployment

from azure.ai.ml import MLClient
from azure.ai.ml.entities import (
    ManagedOnlineEndpoint,
    ManagedOnlineDeployment
)
from azure.identity import DefaultAzureCredential

credential = DefaultAzureCredential()
ml_client = MLClient(
    credential=credential,
    subscription_id="your-subscription",
    resource_group="your-rg",
    workspace_name="your-workspace"
)

# Create endpoint
endpoint = ManagedOnlineEndpoint(
    name="llama-2-70b-endpoint",
    description="Llama 2 70B deployment",
    auth_mode="key"
)
ml_client.online_endpoints.begin_create_or_update(endpoint).result()

# Deploy model
deployment = ManagedOnlineDeployment(
    name="llama-2-70b",
    endpoint_name="llama-2-70b-endpoint",
    model="azureml://registries/azureml-meta/models/Llama-2-70b-chat/versions/1",
    instance_type="Standard_NC96ads_A100_v4",  # 4x A100 80GB
    instance_count=1,
    environment_variables={
        "TENSOR_PARALLEL_SIZE": "4"
    }
)
ml_client.online_deployments.begin_create_or_update(deployment).result()

Using Azure Container Instances for Dev/Test

# Pull and run locally first
docker pull mcr.microsoft.com/azureml/curated/llama-2-70b:latest

# Deploy to ACI
az container create \
    --resource-group your-rg \
    --name llama-2-70b-aci \
    --image mcr.microsoft.com/azureml/curated/llama-2-70b:latest \
    --cpu 8 \
    --memory 64 \
    --gpu-count 4 \
    --gpu-sku A100 \
    --ports 8000

Interacting with the Model

import requests

class Llama2Client:
    def __init__(self, endpoint_url: str, api_key: str):
        self.endpoint_url = endpoint_url
        self.api_key = api_key

    def chat(
        self,
        messages: list,
        max_tokens: int = 1024,
        temperature: float = 0.7
    ) -> str:
        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {self.api_key}"
        }

        # Format for Llama 2 chat template
        formatted_prompt = self._format_messages(messages)

        payload = {
            "inputs": formatted_prompt,
            "parameters": {
                "max_new_tokens": max_tokens,
                "temperature": temperature,
                "do_sample": True,
                "top_p": 0.9
            }
        }

        response = requests.post(
            f"{self.endpoint_url}/score",
            headers=headers,
            json=payload
        )

        return response.json()["generated_text"]

    def _format_messages(self, messages: list) -> str:
        """Format messages using Llama 2 chat template"""
        prompt = ""
        for msg in messages:
            if msg["role"] == "system":
                prompt += f"<<SYS>>\n{msg['content']}\n<</SYS>>\n\n"
            elif msg["role"] == "user":
                prompt += f"[INST] {msg['content']} [/INST]"
            elif msg["role"] == "assistant":
                prompt += f" {msg['content']}"
        return prompt

# Usage
client = Llama2Client(
    endpoint_url="https://llama-2-70b-endpoint.eastus.inference.ml.azure.com",
    api_key="your-api-key"
)

response = client.chat([
    {"role": "system", "content": "You are a helpful coding assistant."},
    {"role": "user", "content": "Write a Python function to calculate fibonacci numbers."}
])
print(response)

Quantization for Cost Optimization

# Using bitsandbytes for quantization
from azure.ai.ml.entities import ManagedOnlineDeployment, CodeConfiguration

deployment_4bit = ManagedOnlineDeployment(
    name="llama-2-70b-4bit",
    endpoint_name="llama-2-70b-endpoint",
    model="azureml://registries/azureml-meta/models/Llama-2-70b-chat/versions/1",
    instance_type="Standard_NC24ads_A100_v4",  # Single A100
    instance_count=1,
    environment_variables={
        "QUANTIZATION": "4bit",
        "LOAD_IN_4BIT": "true"
    }
)

Comparing with Proprietary Models

import time
from dataclasses import dataclass

@dataclass
class BenchmarkResult:
    model: str
    latency_ms: float
    tokens_per_second: float
    quality_score: float

def benchmark_models():
    test_prompt = "Explain the concept of recursion in programming."

    results = []

    # Llama 2 70B
    start = time.time()
    llama_response = llama_client.chat([{"role": "user", "content": test_prompt}])
    llama_latency = (time.time() - start) * 1000

    results.append(BenchmarkResult(
        model="Llama-2-70B",
        latency_ms=llama_latency,
        tokens_per_second=len(llama_response.split()) / (llama_latency / 1000),
        quality_score=0.85  # Manual evaluation
    ))

    return results

# Run benchmark
results = benchmark_models()
for r in results:
    print(f"{r.model}: {r.latency_ms:.0f}ms, {r.tokens_per_second:.1f} tok/s")

Cost Analysis

# Cost comparison (approximate)
MONTHLY_COSTS = {
    "llama-2-70b-managed": {
        "compute": 15000,  # 4x A100 for 30 days
        "inference": 0,     # No per-token cost
        "total": 15000
    },
    "gpt-4-turbo": {
        "compute": 0,
        "inference": 40000,  # 1M tokens/day
        "total": 40000
    }
}

def calculate_break_even(daily_tokens: int):
    """Calculate when self-hosting becomes cheaper"""
    gpt4_cost_per_token = 0.00003  # Approximate blended rate
    llama_fixed_cost = 15000

    gpt4_monthly = daily_tokens * 30 * gpt4_cost_per_token

    if gpt4_monthly > llama_fixed_cost:
        return f"Self-hosting saves ${gpt4_monthly - llama_fixed_cost:.0f}/month"
    else:
        return f"API is cheaper by ${llama_fixed_cost - gpt4_monthly:.0f}/month"

print(calculate_break_even(1_000_000))  # 1M tokens/day

Security Considerations

# Virtual Network Integration
from azure.ai.ml.entities import ManagedOnlineEndpoint

secure_endpoint = ManagedOnlineEndpoint(
    name="llama-2-70b-secure",
    auth_mode="aml_token",
    public_network_access="disabled",
    # VNet integration
)

# Data never leaves your Azure environment
# No external API calls
# Full audit logging

Conclusion

Llama 2 70B on Azure provides enterprise-grade open-source AI with full control over data and costs. It’s ideal for organizations with high volume inference needs or strict data sovereignty requirements.

Michael John Peña

Michael John Peña

Senior Data Engineer based in Sydney. Writing about data, cloud, and technology.