4 min read
Meta Llama 2 70B on Azure: Open Source Power
Meta Llama 2 70B on Azure: Open Source Power
Meta’s Llama 2 70B represents the state of the art in open-source large language models. Available on Azure AI, it offers a compelling alternative to proprietary models for enterprises with specific requirements.
Why Llama 2 70B?
- Open weights: Full transparency and customization potential
- No API costs: Pay only for compute
- Fine-tuning friendly: Customize for your domain
- Strong performance: Competitive with proprietary models
Deployment Options on Azure
Managed Compute Deployment
from azure.ai.ml import MLClient
from azure.ai.ml.entities import (
ManagedOnlineEndpoint,
ManagedOnlineDeployment
)
from azure.identity import DefaultAzureCredential
credential = DefaultAzureCredential()
ml_client = MLClient(
credential=credential,
subscription_id="your-subscription",
resource_group="your-rg",
workspace_name="your-workspace"
)
# Create endpoint
endpoint = ManagedOnlineEndpoint(
name="llama-2-70b-endpoint",
description="Llama 2 70B deployment",
auth_mode="key"
)
ml_client.online_endpoints.begin_create_or_update(endpoint).result()
# Deploy model
deployment = ManagedOnlineDeployment(
name="llama-2-70b",
endpoint_name="llama-2-70b-endpoint",
model="azureml://registries/azureml-meta/models/Llama-2-70b-chat/versions/1",
instance_type="Standard_NC96ads_A100_v4", # 4x A100 80GB
instance_count=1,
environment_variables={
"TENSOR_PARALLEL_SIZE": "4"
}
)
ml_client.online_deployments.begin_create_or_update(deployment).result()
Using Azure Container Instances for Dev/Test
# Pull and run locally first
docker pull mcr.microsoft.com/azureml/curated/llama-2-70b:latest
# Deploy to ACI
az container create \
--resource-group your-rg \
--name llama-2-70b-aci \
--image mcr.microsoft.com/azureml/curated/llama-2-70b:latest \
--cpu 8 \
--memory 64 \
--gpu-count 4 \
--gpu-sku A100 \
--ports 8000
Interacting with the Model
import requests
class Llama2Client:
def __init__(self, endpoint_url: str, api_key: str):
self.endpoint_url = endpoint_url
self.api_key = api_key
def chat(
self,
messages: list,
max_tokens: int = 1024,
temperature: float = 0.7
) -> str:
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}"
}
# Format for Llama 2 chat template
formatted_prompt = self._format_messages(messages)
payload = {
"inputs": formatted_prompt,
"parameters": {
"max_new_tokens": max_tokens,
"temperature": temperature,
"do_sample": True,
"top_p": 0.9
}
}
response = requests.post(
f"{self.endpoint_url}/score",
headers=headers,
json=payload
)
return response.json()["generated_text"]
def _format_messages(self, messages: list) -> str:
"""Format messages using Llama 2 chat template"""
prompt = ""
for msg in messages:
if msg["role"] == "system":
prompt += f"<<SYS>>\n{msg['content']}\n<</SYS>>\n\n"
elif msg["role"] == "user":
prompt += f"[INST] {msg['content']} [/INST]"
elif msg["role"] == "assistant":
prompt += f" {msg['content']}"
return prompt
# Usage
client = Llama2Client(
endpoint_url="https://llama-2-70b-endpoint.eastus.inference.ml.azure.com",
api_key="your-api-key"
)
response = client.chat([
{"role": "system", "content": "You are a helpful coding assistant."},
{"role": "user", "content": "Write a Python function to calculate fibonacci numbers."}
])
print(response)
Quantization for Cost Optimization
# Using bitsandbytes for quantization
from azure.ai.ml.entities import ManagedOnlineDeployment, CodeConfiguration
deployment_4bit = ManagedOnlineDeployment(
name="llama-2-70b-4bit",
endpoint_name="llama-2-70b-endpoint",
model="azureml://registries/azureml-meta/models/Llama-2-70b-chat/versions/1",
instance_type="Standard_NC24ads_A100_v4", # Single A100
instance_count=1,
environment_variables={
"QUANTIZATION": "4bit",
"LOAD_IN_4BIT": "true"
}
)
Comparing with Proprietary Models
import time
from dataclasses import dataclass
@dataclass
class BenchmarkResult:
model: str
latency_ms: float
tokens_per_second: float
quality_score: float
def benchmark_models():
test_prompt = "Explain the concept of recursion in programming."
results = []
# Llama 2 70B
start = time.time()
llama_response = llama_client.chat([{"role": "user", "content": test_prompt}])
llama_latency = (time.time() - start) * 1000
results.append(BenchmarkResult(
model="Llama-2-70B",
latency_ms=llama_latency,
tokens_per_second=len(llama_response.split()) / (llama_latency / 1000),
quality_score=0.85 # Manual evaluation
))
return results
# Run benchmark
results = benchmark_models()
for r in results:
print(f"{r.model}: {r.latency_ms:.0f}ms, {r.tokens_per_second:.1f} tok/s")
Cost Analysis
# Cost comparison (approximate)
MONTHLY_COSTS = {
"llama-2-70b-managed": {
"compute": 15000, # 4x A100 for 30 days
"inference": 0, # No per-token cost
"total": 15000
},
"gpt-4-turbo": {
"compute": 0,
"inference": 40000, # 1M tokens/day
"total": 40000
}
}
def calculate_break_even(daily_tokens: int):
"""Calculate when self-hosting becomes cheaper"""
gpt4_cost_per_token = 0.00003 # Approximate blended rate
llama_fixed_cost = 15000
gpt4_monthly = daily_tokens * 30 * gpt4_cost_per_token
if gpt4_monthly > llama_fixed_cost:
return f"Self-hosting saves ${gpt4_monthly - llama_fixed_cost:.0f}/month"
else:
return f"API is cheaper by ${llama_fixed_cost - gpt4_monthly:.0f}/month"
print(calculate_break_even(1_000_000)) # 1M tokens/day
Security Considerations
# Virtual Network Integration
from azure.ai.ml.entities import ManagedOnlineEndpoint
secure_endpoint = ManagedOnlineEndpoint(
name="llama-2-70b-secure",
auth_mode="aml_token",
public_network_access="disabled",
# VNet integration
)
# Data never leaves your Azure environment
# No external API calls
# Full audit logging
Conclusion
Llama 2 70B on Azure provides enterprise-grade open-source AI with full control over data and costs. It’s ideal for organizations with high volume inference needs or strict data sovereignty requirements.