5 min read
Open Source vs Proprietary LLMs: Making the Right Choice
Open Source vs Proprietary LLMs: Making the Right Choice
The choice between open-source and proprietary LLMs is one of the most important architectural decisions for AI projects. Let’s analyze the tradeoffs systematically.
Decision Framework
from dataclasses import dataclass
from enum import Enum
from typing import List
class Priority(Enum):
COST = "cost"
PERFORMANCE = "performance"
CUSTOMIZATION = "customization"
DATA_PRIVACY = "data_privacy"
TIME_TO_MARKET = "time_to_market"
MAINTENANCE = "maintenance"
@dataclass
class ModelOption:
name: str
type: str # "open_source" or "proprietary"
scores: dict # Priority -> score (1-10)
def recommend_model(priorities: List[Priority], options: List[ModelOption]) -> ModelOption:
"""Score models based on weighted priorities"""
weights = {p: 1.0 / (i + 1) for i, p in enumerate(priorities)}
best_score = 0
best_option = None
for option in options:
score = sum(weights.get(p, 0) * option.scores.get(p.value, 5)
for p in priorities)
if score > best_score:
best_score = score
best_option = option
return best_option
# Define options
options = [
ModelOption(
name="GPT-4 Turbo",
type="proprietary",
scores={
"cost": 4,
"performance": 9,
"customization": 3,
"data_privacy": 5,
"time_to_market": 10,
"maintenance": 10
}
),
ModelOption(
name="Claude 3 Opus",
type="proprietary",
scores={
"cost": 3,
"performance": 9,
"customization": 3,
"data_privacy": 6,
"time_to_market": 10,
"maintenance": 10
}
),
ModelOption(
name="Llama 2 70B",
type="open_source",
scores={
"cost": 8,
"performance": 7,
"customization": 9,
"data_privacy": 10,
"time_to_market": 5,
"maintenance": 4
}
),
ModelOption(
name="Mistral 7B",
type="open_source",
scores={
"cost": 10,
"performance": 6,
"customization": 9,
"data_privacy": 10,
"time_to_market": 6,
"maintenance": 5
}
)
]
# Startup prioritizing time to market
startup_priorities = [
Priority.TIME_TO_MARKET,
Priority.PERFORMANCE,
Priority.COST
]
print(f"Startup: {recommend_model(startup_priorities, options).name}")
# Enterprise prioritizing data privacy
enterprise_priorities = [
Priority.DATA_PRIVACY,
Priority.CUSTOMIZATION,
Priority.PERFORMANCE
]
print(f"Enterprise: {recommend_model(enterprise_priorities, options).name}")
Cost Analysis Calculator
from dataclasses import dataclass
from typing import Optional
@dataclass
class UsagePattern:
daily_requests: int
avg_input_tokens: int
avg_output_tokens: int
peak_concurrent: int
@dataclass
class CostEstimate:
monthly_compute: float
monthly_inference: float
setup_cost: float
monthly_ops: float
@property
def total_monthly(self) -> float:
return self.monthly_compute + self.monthly_inference + self.monthly_ops
@property
def total_first_year(self) -> float:
return self.setup_cost + (self.total_monthly * 12)
def estimate_proprietary_cost(usage: UsagePattern) -> CostEstimate:
"""Estimate cost for proprietary API (GPT-4 Turbo)"""
input_price_per_1m = 10.0
output_price_per_1m = 30.0
monthly_input_tokens = usage.daily_requests * usage.avg_input_tokens * 30
monthly_output_tokens = usage.daily_requests * usage.avg_output_tokens * 30
monthly_cost = (
(monthly_input_tokens / 1_000_000) * input_price_per_1m +
(monthly_output_tokens / 1_000_000) * output_price_per_1m
)
return CostEstimate(
monthly_compute=0,
monthly_inference=monthly_cost,
setup_cost=0,
monthly_ops=0
)
def estimate_open_source_cost(usage: UsagePattern) -> CostEstimate:
"""Estimate cost for self-hosted Llama 2 70B on Azure"""
# 4x A100 80GB instance
hourly_compute = 27.20
monthly_compute = hourly_compute * 24 * 30
# Engineering time for setup (40 hours at $150/hr)
setup_cost = 40 * 150
# Monthly ops (monitoring, updates, etc.)
monthly_ops = 20 * 150 # 20 hours/month
return CostEstimate(
monthly_compute=monthly_compute,
monthly_inference=0,
setup_cost=setup_cost,
monthly_ops=monthly_ops
)
# Compare costs
usage = UsagePattern(
daily_requests=10000,
avg_input_tokens=500,
avg_output_tokens=1000,
peak_concurrent=50
)
proprietary = estimate_proprietary_cost(usage)
open_source = estimate_open_source_cost(usage)
print(f"Proprietary monthly: ${proprietary.total_monthly:,.0f}")
print(f"Open source monthly: ${open_source.total_monthly:,.0f}")
print(f"Break-even at: {open_source.setup_cost / (proprietary.total_monthly - open_source.total_monthly):.1f} months")
Capability Comparison Matrix
import pandas as pd
capabilities = {
"Feature": [
"Maximum context",
"Fine-tuning",
"Function calling",
"Vision support",
"Streaming",
"Self-hosting",
"Data privacy",
"Latency control",
"Custom tokenizer"
],
"GPT-4 Turbo": [
"128K", "Limited", "Yes", "Yes", "Yes",
"No", "API only", "Limited", "No"
],
"Claude 3 Opus": [
"200K", "No", "Yes", "Yes", "Yes",
"No", "API only", "Limited", "No"
],
"Llama 2 70B": [
"4K", "Full", "Via prompting", "No", "Yes",
"Yes", "Full control", "Full control", "Yes"
],
"Mixtral 8x7B": [
"32K", "Full", "Via prompting", "No", "Yes",
"Yes", "Full control", "Full control", "Yes"
]
}
df = pd.DataFrame(capabilities)
print(df.to_string(index=False))
Hybrid Architecture Pattern
from abc import ABC, abstractmethod
from typing import Dict, Any
class LLMBackend(ABC):
@abstractmethod
def complete(self, prompt: str, **kwargs) -> str:
pass
class ProprietaryBackend(LLMBackend):
"""For complex tasks requiring best quality"""
def __init__(self, model: str = "gpt-4-turbo"):
from openai import OpenAI
self.client = OpenAI()
self.model = model
def complete(self, prompt: str, **kwargs) -> str:
response = self.client.chat.completions.create(
model=self.model,
messages=[{"role": "user", "content": prompt}],
**kwargs
)
return response.choices[0].message.content
class OpenSourceBackend(LLMBackend):
"""For high-volume, simpler tasks"""
def __init__(self, endpoint_url: str, api_key: str):
self.endpoint_url = endpoint_url
self.api_key = api_key
def complete(self, prompt: str, **kwargs) -> str:
import requests
response = requests.post(
self.endpoint_url,
headers={"Authorization": f"Bearer {self.api_key}"},
json={"prompt": prompt, **kwargs}
)
return response.json()["text"]
class HybridRouter:
def __init__(self):
self.proprietary = ProprietaryBackend()
self.open_source = OpenSourceBackend(
"https://llama-endpoint.inference.ml.azure.com",
"your-key"
)
def route(self, task_type: str, prompt: str) -> str:
# Route based on task complexity
complex_tasks = {"analysis", "reasoning", "creative"}
if task_type in complex_tasks:
return self.proprietary.complete(prompt)
else:
return self.open_source.complete(prompt)
# Usage
router = HybridRouter()
result = router.route("classification", "Classify this text: ...")
Migration Strategy
# Phased migration from proprietary to open source
class MigrationManager:
def __init__(self):
self.traffic_split = {"proprietary": 100, "open_source": 0}
self.quality_threshold = 0.85
def update_split(self, open_source_quality: float):
"""Gradually shift traffic based on quality metrics"""
if open_source_quality >= self.quality_threshold:
new_os_pct = min(self.traffic_split["open_source"] + 10, 100)
self.traffic_split["open_source"] = new_os_pct
self.traffic_split["proprietary"] = 100 - new_os_pct
def get_backend(self) -> str:
import random
if random.randint(1, 100) <= self.traffic_split["open_source"]:
return "open_source"
return "proprietary"
Conclusion
The choice isn’t binary - most production systems benefit from a hybrid approach that leverages the strengths of both open-source and proprietary models while managing costs and maintaining quality.