4 min read
Choosing the Right Model: GPT-4o vs Claude 3.5 Sonnet for Different Tasks
With multiple frontier models available, choosing the right one for your task matters. Let’s break down when to use GPT-4o, Claude 3.5 Sonnet, and other options.
Current Model Landscape
from dataclasses import dataclass
@dataclass
class ModelCapabilities:
model: str
provider: str
context_window: int
vision: bool
streaming: bool
function_calling: bool
cost_per_1m_input: float
cost_per_1m_output: float
gpt_4o = ModelCapabilities(
model="gpt-4o",
provider="OpenAI",
context_window=128000,
vision=True,
streaming=True,
function_calling=True,
cost_per_1m_input=2.50,
cost_per_1m_output=10.00
)
claude_35_sonnet = ModelCapabilities(
model="claude-3-5-sonnet-20240620",
provider="Anthropic",
context_window=200000,
vision=True,
streaming=True,
function_calling=True,
cost_per_1m_input=3.00,
cost_per_1m_output=15.00
)
gpt_4o_mini = ModelCapabilities(
model="gpt-4o-mini",
provider="OpenAI",
context_window=128000,
vision=True,
streaming=True,
function_calling=True,
cost_per_1m_input=0.15,
cost_per_1m_output=0.60
)
Performance Benchmarks
Based on published benchmarks:
| Task | GPT-4o | Claude 3.5 Sonnet |
|---|---|---|
| MMLU | 88.7% | 88.7% |
| HumanEval | 90.2% | 92.0% |
| MATH | 76.6% | 71.1% |
| Graduate Reasoning | ~65% | 59.4% |
Practical Comparison
from openai import OpenAI
from anthropic import Anthropic
import time
openai_client = OpenAI()
anthropic_client = Anthropic()
def compare_models(test_cases: list) -> dict:
"""Compare model performance across different task types"""
results = []
for test in test_cases:
# Test GPT-4o
start = time.time()
gpt4_response = openai_client.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": test["prompt"]}]
)
gpt4_time = time.time() - start
# Test Claude 3.5 Sonnet
start = time.time()
claude_response = anthropic_client.messages.create(
model="claude-3-5-sonnet-20240620",
max_tokens=4096,
messages=[{"role": "user", "content": test["prompt"]}]
)
claude_time = time.time() - start
results.append({
"task": test["name"],
"gpt4o_time": gpt4_time,
"claude_time": claude_time,
"gpt4o_tokens": gpt4_response.usage.total_tokens,
})
return results
# Example test cases
test_cases = [
{
"name": "Simple math",
"prompt": "What is 15% of 240?"
},
{
"name": "Complex reasoning",
"prompt": "A snail climbs 3 feet during the day but slides back 2 feet at night. How many days to climb a 10-foot wall?"
},
{
"name": "Code generation",
"prompt": "Write a function to find the longest palindromic substring in a string."
}
]
Cost Analysis
def calculate_cost(model: str, input_tokens: int, output_tokens: int) -> float:
"""Calculate the cost of an API call"""
pricing = {
"gpt-4o": {"input": 2.50, "output": 10.00},
"gpt-4o-mini": {"input": 0.15, "output": 0.60},
"claude-3-5-sonnet": {"input": 3.00, "output": 15.00},
"claude-3-haiku": {"input": 0.25, "output": 1.25}
}
p = pricing.get(model, pricing["gpt-4o"])
return (input_tokens * p["input"] + output_tokens * p["output"]) / 1_000_000
# Example comparison for 1000 input, 500 output tokens
for model in ["gpt-4o", "gpt-4o-mini", "claude-3-5-sonnet"]:
cost = calculate_cost(model, 1000, 500)
print(f"{model}: ${cost:.4f}")
Decision Framework
def select_model(
task_type: str,
requires_long_context: bool = False,
requires_function_calling: bool = False,
budget_constrained: bool = False,
provider_preference: str = None
) -> str:
"""
Select the appropriate model based on requirements
"""
# Long context needs
if requires_long_context:
return "claude-3-5-sonnet" # 200K context
# Budget constraints
if budget_constrained:
return "gpt-4o-mini"
# Provider preference
if provider_preference == "anthropic":
return "claude-3-5-sonnet"
# Task-based selection
if task_type == "coding":
return "claude-3-5-sonnet" # Slightly better on HumanEval
if task_type == "math":
return "gpt-4o" # Better on MATH benchmark
# Default
return "gpt-4o"
Practical Examples
Use GPT-4o For:
# Chatbots with function calling
response = openai_client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What's the weather in Seattle?"}
],
tools=[weather_function],
tool_choice="auto",
stream=True
)
# Vision + reasoning
response = openai_client.chat.completions.create(
model="gpt-4o",
messages=[{
"role": "user",
"content": [
{"type": "text", "text": "Analyze this chart"},
{"type": "image_url", "image_url": {"url": image_url}}
]
}]
)
Use Claude 3.5 Sonnet For:
# Long document analysis
response = anthropic_client.messages.create(
model="claude-3-5-sonnet-20240620",
max_tokens=4096,
messages=[{
"role": "user",
"content": f"Analyze this 150-page document:\n{long_document}"
}]
)
# Code generation
response = anthropic_client.messages.create(
model="claude-3-5-sonnet-20240620",
max_tokens=4096,
messages=[{
"role": "user",
"content": "Implement a red-black tree with insert, delete, and search operations"
}]
)
Looking Ahead
The model landscape continues to evolve. OpenAI has hinted at improved reasoning capabilities in future releases. Build your architecture to be model-agnostic:
class ModelAgnosticClient:
"""Abstraction that can switch models easily"""
def __init__(self, preferred_provider: str = "openai"):
self.openai = OpenAI()
self.anthropic = Anthropic()
self.preferred = preferred_provider
def chat(self, prompt: str, **kwargs) -> str:
if self.preferred == "openai":
response = self.openai.chat.completions.create(
model=kwargs.get("model", "gpt-4o"),
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message.content
else:
response = self.anthropic.messages.create(
model=kwargs.get("model", "claude-3-5-sonnet-20240620"),
max_tokens=4096,
messages=[{"role": "user", "content": prompt}]
)
return response.content[0].text
Conclusion
Both GPT-4o and Claude 3.5 Sonnet are excellent choices. Select based on:
- Context length: Claude for very long documents
- Code generation: Claude has a slight edge
- Math/reasoning: GPT-4o performs well
- Cost: GPT-4o-mini for budget-conscious applications
- Ecosystem: GPT-4o for Azure integration
The best strategy is often multi-provider, using each model for its strengths.