4 min read
When to Use o1: A Decision Guide for AI Applications
With multiple OpenAI models available, knowing when o1 is the right choice can save you money and improve results. Here’s a practical guide for making that decision.
The o1 Sweet Spot
o1 shines in specific scenarios. Understanding these helps you deploy it effectively.
from enum import Enum
from typing import List, Tuple
class TaskComplexity(Enum):
SIMPLE = 1 # Direct lookup or simple transformation
MODERATE = 2 # Some reasoning required
COMPLEX = 3 # Multi-step reasoning essential
EXPERT = 4 # Requires deep domain expertise
class O1Suitability:
"""Evaluate whether o1 is appropriate for a given task"""
HIGH_VALUE_TASKS = [
"mathematical_proofs",
"algorithm_design",
"code_architecture",
"scientific_reasoning",
"legal_analysis",
"strategic_planning",
"root_cause_analysis",
"security_review"
]
LOW_VALUE_TASKS = [
"simple_qa",
"text_formatting",
"translation",
"summarization",
"chat_conversation",
"content_generation"
]
@staticmethod
def evaluate(task_type: str, complexity: TaskComplexity,
error_cost: float) -> Tuple[str, str]:
"""
Returns (recommended_model, reasoning)
"""
if task_type in O1Suitability.LOW_VALUE_TASKS:
return ("gpt-4o-mini", "Simple task doesn't justify o1 cost")
if complexity.value >= 3 and error_cost > 100:
return ("o1-preview", "High complexity + high error cost")
if task_type in O1Suitability.HIGH_VALUE_TASKS:
if complexity.value >= 2:
return ("o1-preview", "Task type benefits from reasoning")
return ("gpt-4o", "General purpose model sufficient")
Real-World Use Cases
Use Case 1: Code Review and Bug Detection
from openai import OpenAI
client = OpenAI()
def deep_code_review(code: str) -> dict:
"""
Use o1 for thorough code review - worth the cost
for catching bugs before production
"""
response = client.chat.completions.create(
model="o1-preview",
messages=[{
"role": "user",
"content": f"""
Review this code for:
1. Logic errors and bugs
2. Security vulnerabilities
3. Performance issues
4. Edge cases not handled
5. Race conditions (if applicable)
Code:
```python
{code}
```
Provide specific line numbers and fixes for each issue found.
"""
}],
max_completion_tokens=8192
)
return {
"review": response.choices[0].message.content,
"reasoning_tokens": response.usage.completion_tokens_details.reasoning_tokens
}
Use Case 2: Data Pipeline Validation
def validate_etl_logic(pipeline_spec: str) -> dict:
"""
Validate complex ETL logic - o1 can catch subtle issues
"""
response = client.chat.completions.create(
model="o1-preview",
messages=[{
"role": "user",
"content": f"""
Analyze this ETL pipeline specification for correctness:
{pipeline_spec}
Check for:
1. Data loss scenarios
2. Ordering dependencies
3. Idempotency issues
4. Schema compatibility
5. Null handling edge cases
Identify any scenarios where data could be corrupted or lost.
"""
}],
max_completion_tokens=8192
)
return response.choices[0].message.content
Use Case 3: Architecture Decisions
def evaluate_architecture(requirements: str, options: List[str]) -> str:
"""
Complex architectural decisions benefit from o1's reasoning
"""
options_text = "\n".join([f"{i+1}. {opt}" for i, opt in enumerate(options)])
response = client.chat.completions.create(
model="o1-preview",
messages=[{
"role": "user",
"content": f"""
Given these requirements:
{requirements}
Evaluate these architectural options:
{options_text}
For each option:
1. Analyze pros and cons
2. Identify hidden costs and risks
3. Consider scalability implications
4. Evaluate operational complexity
Recommend the best option with detailed justification.
"""
}],
max_completion_tokens=8192
)
return response.choices[0].message.content
When NOT to Use o1
# DON'T use o1 for simple tasks
# Bad - wasteful
response = client.chat.completions.create(
model="o1-preview", # Overkill!
messages=[{"role": "user", "content": "Convert this to uppercase: hello"}]
)
# Good - appropriate model
response = client.chat.completions.create(
model="gpt-4o-mini", # Much cheaper, same result
messages=[{"role": "user", "content": "Convert this to uppercase: hello"}]
)
# DON'T use o1 for streaming chat
# o1 doesn't support streaming - use GPT-4o instead
# DON'T use o1 when you need function calling
# Not supported yet - use GPT-4o
Cost-Benefit Analysis
def should_use_o1(task_value: float,
gpt4_accuracy: float,
o1_accuracy: float,
gpt4_cost: float,
o1_cost: float) -> bool:
"""
Simple economic analysis for model selection
"""
# Expected value with GPT-4o
ev_gpt4 = task_value * gpt4_accuracy - gpt4_cost
# Expected value with o1
ev_o1 = task_value * o1_accuracy - o1_cost
# Use o1 if it provides better expected value
return ev_o1 > ev_gpt4
# Example: Bug in production costs $10,000
# GPT-4o catches 80% of bugs, costs $0.01
# o1 catches 95% of bugs, costs $0.15
# EV(GPT-4o) = 10000 * 0.80 - 0.01 = $7,999.99
# EV(o1) = 10000 * 0.95 - 0.15 = $9,499.85
# Use o1 for high-value bug detection!
Conclusion
Use o1 when the cost of errors is high and the task genuinely requires reasoning. For everything else, GPT-4o or GPT-4o-mini will serve you better at a fraction of the cost.