Back to Blog
5 min read

AI Infrastructure Evolution: From GPUs to AI-Native Platforms

AI infrastructure has evolved dramatically from raw GPU access to sophisticated managed platforms. Let’s trace this evolution and understand what it means for enterprises.

The Infrastructure Timeline

Era 1: DIY GPU Clusters (2018-2021)

Characteristics:
- Buy/rent GPUs
- Manage everything yourself
- High expertise required
- Long setup times

Typical Stack:
┌─────────────────────────────────────┐
│         Your Application            │
├─────────────────────────────────────┤
│    PyTorch / TensorFlow             │
├─────────────────────────────────────┤
│    CUDA / cuDNN                     │
├─────────────────────────────────────┤
│    GPU Drivers                      │
├─────────────────────────────────────┤
│    Linux / Kubernetes               │
├─────────────────────────────────────┤
│    NVIDIA GPUs                      │
└─────────────────────────────────────┘

Challenges:
- 6+ months to set up properly
- Specialized team needed
- Hardware procurement delays
- Underutilization common

Era 2: Managed ML Platforms (2020-2023)

Characteristics:
- Cloud-managed compute
- Abstracted GPU management
- Pre-built environments
- Pay-per-use

Typical Stack:
┌─────────────────────────────────────┐
│         Your Application            │
├─────────────────────────────────────┤
│    Azure ML / SageMaker / Vertex    │
├─────────────────────────────────────┤
│    Managed Compute (abstracted)     │
└─────────────────────────────────────┘

Improvements:
- Days to get started
- No hardware management
- Auto-scaling
- Cost optimization features

Era 3: Foundation Model APIs (2022-2024)

Characteristics:
- Pre-trained models as service
- Simple API calls
- No training required
- Pay-per-token

Typical Stack:
┌─────────────────────────────────────┐
│         Your Application            │
├─────────────────────────────────────┤
│    Azure OpenAI / Anthropic / etc   │
├─────────────────────────────────────┤
│    (Everything else managed)        │
└─────────────────────────────────────┘

Breakthrough:
- Minutes to get started
- No ML expertise needed
- Massive cost reduction
- Focus on application, not infrastructure

Era 4: AI-Native Platforms (2024+)

Characteristics:
- Integrated AI across services
- Multiple model options
- Built-in governance
- End-to-end tooling

Azure AI Foundry Stack:
┌─────────────────────────────────────┐
│         Your Application            │
├─────────────────────────────────────┤
│    Azure AI Foundry                 │
│  ┌─────────────────────────────────┐│
│  │ Agents │ RAG │ Fine-tuning      ││
│  ├─────────────────────────────────┤│
│  │ Model Catalog (100+ models)     ││
│  ├─────────────────────────────────┤│
│  │ Evaluation │ Monitoring │ Gov   ││
│  └─────────────────────────────────┘│
├─────────────────────────────────────┤
│    (All infrastructure managed)     │
└─────────────────────────────────────┘

Infrastructure Options Today

Option 1: Serverless AI APIs

# Simplest option - just make API calls
from openai import AzureOpenAI

client = AzureOpenAI(
    api_key=os.environ["AZURE_OPENAI_KEY"],
    api_version="2024-10-01",
    azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"]
)

response = client.chat.completions.create(
    model="gpt-4o",
    messages=[{"role": "user", "content": "Hello!"}]
)

# Pros:
# - Zero infrastructure management
# - Instant scaling
# - Pay only for usage
# - Always latest features

# Cons:
# - Less control
# - Potential rate limits
# - Data leaves your environment

Option 2: Provisioned Throughput

# Reserved capacity for predictable workloads
"""
Azure OpenAI PTU (Provisioned Throughput Units):
- Reserved capacity
- Predictable latency
- Cost-effective at scale
- SLA guarantees

Sizing example:
- 100 PTU = ~100K tokens/minute sustained
- Cost: ~$2/hour per PTU
- Break-even: ~400K tokens/hour usage
"""

# When to use:
# - Predictable, high-volume workloads
# - Latency-sensitive applications
# - Cost optimization at scale

Option 3: Private Endpoints

# AI within your network boundary
"""
Azure OpenAI with Private Endpoints:

Your VNet
┌─────────────────────────────────────┐
│  ┌─────────┐    ┌─────────────────┐│
│  │ App     │───→│ Private Endpoint││
│  └─────────┘    └────────┬────────┘│
└───────────────────────────┼─────────┘

                    ┌───────▼───────┐
                    │ Azure OpenAI  │
                    │ (No public IP)│
                    └───────────────┘

Benefits:
- Data never leaves your network boundary
- Compliance requirements met
- Additional security controls
"""

Option 4: Custom Model Deployment

# Deploy your own models
from azure.ai.ml import MLClient
from azure.ai.ml.entities import ManagedOnlineEndpoint, ManagedOnlineDeployment

# Deploy custom/fine-tuned model
endpoint = ManagedOnlineEndpoint(
    name="custom-model-endpoint",
    auth_mode="key"
)

deployment = ManagedOnlineDeployment(
    name="custom-model-v1",
    endpoint_name="custom-model-endpoint",
    model=ml_client.models.get("my-fine-tuned-model", version="1"),
    instance_type="Standard_NC24ads_A100_v4",
    instance_count=2
)

# When to use:
# - Custom fine-tuned models
# - Specialized open-source models
# - Maximum control over inference

Option 5: Kubernetes Deployment

# Full control with AKS
apiVersion: apps/v1
kind: Deployment
metadata:
  name: llm-inference
spec:
  replicas: 3
  template:
    spec:
      containers:
      - name: vllm
        image: vllm/vllm-openai:latest
        args:
          - --model=meta-llama/Llama-3.1-70B-Instruct
          - --tensor-parallel-size=4
        resources:
          limits:
            nvidia.com/gpu: 4
      nodeSelector:
        gpu-type: a100

Infrastructure Decision Framework

def select_infrastructure(requirements: dict) -> str:
    """Select optimal infrastructure based on requirements."""

    # Factors to consider
    factors = {
        "data_sensitivity": requirements.get("data_sensitivity", "low"),
        "latency_requirement": requirements.get("latency_ms", 1000),
        "monthly_volume": requirements.get("monthly_requests", 10000),
        "customization_need": requirements.get("need_custom_model", False),
        "team_expertise": requirements.get("ml_expertise", "low"),
        "budget": requirements.get("monthly_budget", 1000)
    }

    # Decision logic
    if factors["data_sensitivity"] == "high":
        if factors["customization_need"]:
            return "kubernetes_private"  # Full control, private
        return "private_endpoints"  # Managed but private

    if factors["monthly_volume"] > 1000000:
        return "provisioned_throughput"  # Cost-effective at scale

    if factors["customization_need"] and factors["team_expertise"] == "high":
        return "custom_deployment"  # Custom models

    return "serverless_api"  # Default: simplest option

# Example
recommendation = select_infrastructure({
    "data_sensitivity": "medium",
    "latency_ms": 500,
    "monthly_requests": 500000,
    "need_custom_model": False,
    "ml_expertise": "low",
    "monthly_budget": 5000
})
# Result: "serverless_api" or "provisioned_throughput"

Cost Comparison

cost_comparison = {
    "serverless_api": {
        "setup_cost": 0,
        "per_1k_tokens": 0.005,
        "fixed_monthly": 0,
        "best_for": "Variable, lower volume"
    },
    "provisioned_throughput": {
        "setup_cost": 0,
        "per_1k_tokens": 0.002,  # Estimated at high volume
        "fixed_monthly": 3000,  # ~100 PTU
        "best_for": "High volume, predictable"
    },
    "custom_deployment": {
        "setup_cost": 5000,  # Development time
        "per_1k_tokens": 0.001,  # Self-hosted
        "fixed_monthly": 8000,  # GPU instances
        "best_for": "Custom models, highest volume"
    },
    "kubernetes": {
        "setup_cost": 20000,  # Significant setup
        "per_1k_tokens": 0.0005,  # Lowest marginal cost
        "fixed_monthly": 15000,  # GPU cluster
        "best_for": "Maximum control, custom requirements"
    }
}

def calculate_monthly_cost(option: str, monthly_tokens: int) -> float:
    config = cost_comparison[option]
    variable_cost = (monthly_tokens / 1000) * config["per_1k_tokens"]
    return config["fixed_monthly"] + variable_cost

The Future: AI-Native Everything

The trend is clear: AI capabilities are being embedded into every platform:

  • Databases: Vector search, AI queries
  • Analytics: Natural language analytics
  • Development: AI-assisted coding everywhere
  • Operations: AI-powered monitoring and automation

Infrastructure will increasingly abstract away the complexity of AI, making it as easy to add AI as it is to add a database today.

Resources

Michael John Peña

Michael John Peña

Senior Data Engineer based in Sydney. Writing about data, cloud, and technology.