5 min read
GPU Availability in 2024: Navigating the AI Compute Crunch
GPU availability has been a defining constraint of the AI era. Let’s examine the 2024 landscape and strategies for securing compute resources.
The GPU Landscape
Current State (Late 2024)
NVIDIA GPU Hierarchy:
┌─────────────────────────────────────────────────────────┐
│ H100/H200 (Data Center) │
│ - Highest performance │
│ - Scarce availability │
│ - 6-12 month lead times for large orders │
├─────────────────────────────────────────────────────────┤
│ A100 (Data Center) │
│ - Previous generation, still powerful │
│ - Better availability │
│ - Good price-performance for many workloads │
├─────────────────────────────────────────────────────────┤
│ A10G/L4 (Cloud Inference) │
│ - Optimized for inference │
│ - Generally available │
│ - Cost-effective for serving │
├─────────────────────────────────────────────────────────┤
│ T4 (Entry Level) │
│ - Widely available │
│ - Good for small models │
│ - Lowest cost │
└─────────────────────────────────────────────────────────┘
Cloud GPU Availability
Azure GPU Options
azure_gpu_instances = {
# Training/Large Model Inference
"ND_A100_v4": {
"gpus": 8,
"gpu_type": "A100 80GB",
"memory_per_gpu": "80GB",
"interconnect": "NVLink",
"availability": "Limited - reserve in advance",
"use_case": "Large model training, 70B+ inference"
},
"NC_A100_v4": {
"gpus": 4,
"gpu_type": "A100 80GB",
"memory_per_gpu": "80GB",
"availability": "Moderate",
"use_case": "Medium training, 70B inference"
},
# Inference Focused
"NC_T4_v3": {
"gpus": "1-4",
"gpu_type": "T4 16GB",
"memory_per_gpu": "16GB",
"availability": "Good",
"use_case": "Small model inference, development"
},
"NC_A10_v4": {
"gpus": "1-2",
"gpu_type": "A10 24GB",
"memory_per_gpu": "24GB",
"availability": "Good",
"use_case": "Medium model inference"
}
}
def select_gpu_for_workload(model_size_b: float, batch_size: int, training: bool) -> str:
"""Select appropriate GPU instance."""
memory_needed = estimate_memory(model_size_b, batch_size, training)
if training:
if model_size_b > 70:
return "ND_A100_v4" # Need multi-GPU for large models
elif model_size_b > 13:
return "NC_A100_v4"
else:
return "NC_T4_v3"
else: # Inference
if model_size_b > 70:
return "NC_A100_v4" # 70B needs ~140GB with quantization
elif model_size_b > 13:
return "NC_A10_v4"
else:
return "NC_T4_v3"
def estimate_memory(model_size_b: float, batch_size: int, training: bool) -> float:
"""Estimate GPU memory needed in GB."""
# Model parameters
param_memory = model_size_b * 2 # FP16: 2 bytes per param
if training:
# Gradients + optimizer states
training_overhead = param_memory * 4 # AdamW needs 4x params
return param_memory + training_overhead
else:
# Inference: just model + KV cache
kv_cache = batch_size * 2 # Rough estimate
return param_memory + kv_cache
Strategies for GPU Access
Strategy 1: Reserved Capacity
# Azure Reserved Instances for GPUs
reservation_strategy = {
"when_to_reserve": [
"Predictable, consistent workloads",
"Long-term projects (1+ year)",
"Cost optimization priority"
],
"reservation_options": {
"1_year": {"discount": "~30%", "flexibility": "Limited"},
"3_year": {"discount": "~50%", "flexibility": "Very Limited"},
"spot": {"discount": "~60-90%", "flexibility": "Can be evicted"}
},
"best_practice": """
- Reserve base capacity (consistent load)
- Use on-demand for peaks
- Use spot for non-critical batch jobs
"""
}
Strategy 2: Multi-Cloud Approach
class MultiCloudGPUManager:
"""Manage GPU resources across clouds."""
def __init__(self):
self.providers = {
"azure": AzureGPUProvider(),
"aws": AWSGPUProvider(),
"gcp": GCPGPUProvider()
}
async def find_available_capacity(
self,
gpu_type: str,
count: int,
region_preference: list
) -> list:
"""Find available GPU capacity across clouds."""
options = []
for provider_name, provider in self.providers.items():
availability = await provider.check_availability(
gpu_type=gpu_type,
count=count,
regions=region_preference
)
for region, status in availability.items():
if status["available"]:
options.append({
"provider": provider_name,
"region": region,
"price_per_hour": status["price"],
"estimated_wait": status["wait_time"]
})
return sorted(options, key=lambda x: x["price_per_hour"])
async def provision_best_option(self, requirements: dict):
"""Provision from best available option."""
options = await self.find_available_capacity(
gpu_type=requirements["gpu_type"],
count=requirements["count"],
region_preference=requirements["regions"]
)
if not options:
raise NoCapacityException("No GPU capacity available")
best = options[0]
return await self.providers[best["provider"]].provision(
gpu_type=requirements["gpu_type"],
count=requirements["count"],
region=best["region"]
)
Strategy 3: Optimize Utilization
class GPUOptimizer:
"""Maximize GPU utilization."""
def optimize_batch_size(self, model, gpu_memory_gb: int) -> int:
"""Find optimal batch size for GPU memory."""
model_memory = model.estimate_memory()
available = gpu_memory_gb * 0.9 # Leave 10% buffer
# Binary search for optimal batch size
low, high = 1, 128
optimal = 1
while low <= high:
mid = (low + high) // 2
batch_memory = model.estimate_batch_memory(mid)
if model_memory + batch_memory <= available:
optimal = mid
low = mid + 1
else:
high = mid - 1
return optimal
def schedule_jobs_efficiently(self, jobs: list, gpus: list) -> dict:
"""Pack jobs onto GPUs efficiently."""
# Sort jobs by memory requirement (descending)
jobs = sorted(jobs, key=lambda j: j.memory_required, reverse=True)
assignments = {gpu.id: [] for gpu in gpus}
gpu_usage = {gpu.id: 0 for gpu in gpus}
for job in jobs:
# Find GPU with most space that can fit the job
best_gpu = None
best_remaining = -1
for gpu in gpus:
remaining = gpu.memory - gpu_usage[gpu.id]
if remaining >= job.memory_required:
if remaining > best_remaining:
best_gpu = gpu
best_remaining = remaining
if best_gpu:
assignments[best_gpu.id].append(job)
gpu_usage[best_gpu.id] += job.memory_required
else:
raise InsufficientCapacityException(f"Cannot fit job {job.id}")
return assignments
Strategy 4: Use Managed Services
# Often more cost-effective than raw GPUs
managed_services_comparison = {
"azure_openai": {
"gpu_management": "None required",
"scaling": "Automatic",
"availability": "High",
"cost_model": "Per token",
"when_to_use": "Standard LLM workloads"
},
"azure_ml_endpoints": {
"gpu_management": "Managed",
"scaling": "Configurable",
"availability": "Depends on GPU type",
"cost_model": "Per hour + inference",
"when_to_use": "Custom models"
},
"raw_gpu_instances": {
"gpu_management": "Full control, full responsibility",
"scaling": "Manual or custom",
"availability": "Constrained for high-end",
"cost_model": "Per hour",
"when_to_use": "Training, specialized workloads"
}
}
# Key insight: Managed services abstract away GPU scarcity
# for most inference workloads
Looking Ahead
2025 GPU Landscape Predictions:
├── Supply improves as new fabs come online
├── H200 becomes more available
├── Alternative accelerators gain share (AMD, Intel, custom)
├── Managed services continue to abstract GPU access
└── Edge AI reduces cloud GPU demand
The GPU crunch will ease, but strategic capacity planning remains important. Use managed services where possible, and reserve capacity for predictable workloads.